
Design of embedded systems with complex task
dependencies and shared resource interference*

F. Gioulekas1, P. Poplavko2, R. Kahil2
P. Katsaros1, 4, M. Bozga2, S. Bensalem2 and P. Palomo3

1 Information Technology Institute, Centre for Research and Technology Hellas, Greece
{gioulekas, pkatsaros}@iti.gr

2 Universite ́ Joseph Fourier - Verimag, Grenoble, France
{petro.poplavko, rany.kahil, marius.bozga, saddek.bensalem}@imag.fr

3 Deimos-Space S.L.U, Madrid, Spain
pedro.palomo@deimos-space.com

4 Aristotle University of Thessaloniki, Greece
katsaros@csd.auth.gr

Abstract. Languages for embedded systems ensure predictable timing behavior
by specifying constraints based on either data streaming or reactive control
models of computation. Moreover, various toolsets facilitate the incremental
integration of application functionalities and the system design by evolutionary
refinement and model-based code generation. Modern embedded systems
involve various sources of interference in shared resources (e.g. multicores) and
advanced real-time constraints, such as mixed-criticality levels. A sufficiently
expressive modeling approach for complex dependency patterns between real-
time tasks is needed along with a formal analysis of models for runtime
resource managers with timing constraints. Our approach utilizes a model of
computation, called Fixed-Priority Process Networks, which ensures functional
determinism by unifying streaming and reactive control within a timed
automata framework. The tool flow extends the open source TASTE tool-suite
with model transformations to the BIP language and code generation tools. We
outline the use of our flow on the design of a spacecraft on-board application
running on a quad-core LEON4FT processor.

Keywords: model-based design, embedded systems, model of computation,
code generation, multicores.

1 Introduction

The model-based philosophy for embedded system design is grounded on the
evolutionary building of a “prototype” using models [5], which support the analysis,
the gradual refinement and the setting of real-time attributes that ensure a predictable
timing behavior. For being able to analyze the models, they can be specified using
languages based on formal models of computation [9], which allow the synthesis and

* This work was supported by ESA under contract No. 4000111814/14/NL/MH

the optimization of behavior into an implementation solution. Such models provide
syntax for describing dependencies between the runtime entities of a design and rules
for computation of the behavior given the syntax. The well-known streaming models
of computation are suitable for describing complicated data transfer functions,
whereas the reactive control models – used in synchronous languages – are suitable
for specifying complex control dependencies; the latter are compiled to sequential
code as tasks, and classical schedulability methods can then be applied.

However, in modern embedded systems the task dependencies are further
complicated, due to various sources of interference in shared software and hardware
resources (e.g. buses, DMAs and I/Os in multicores) and additional constraints, such
as mixed-criticality levels, quality of service, dynamic voltage and frequency scaling.
Thus, the design should ensure predictable timing behavior, while allowing adaptation
to unexpected overload cases by dynamically reallocating resources.

To this end, we present a rigorous design approach that integrates a recent model
of computation, the Fixed Priority Process Networks (FPPNs) [4], with the TASTE
toolset [6] and a timed automata analysis framework with “resource managers” [7],
i.e. software functions that monitor utilization of compute resources and adapt the
schedule in cases of exceptional shortage [2, 3]. The Fixed-Priority Process Networks
combines the expressiveness of streaming and reactive control, retains the efficiency
potential of parallel processing and ensures functional determinism, i.e. the program’s
outputs are neither dependent on the tasks’ execution times, nor on their scheduling.
The open source TASTE toolset supports the incremental model-based integration of
application functionalities based on a system-level architecture description language,
the AADL. We have extended TASTE towards enabling the design of FPPN
programs and we have implemented a model transformation to a timed automata
modeling framework in BIP, a language with formal operational semantics and code
generation tools for execution engines ported in various embedded platforms. Our
approach allows scheduling the program’s tasks, while taking into account their
dependencies, as well as various sources of interference, through explicit interference
models and resource managers; a resource manager is an integral part of an online
scheduler that implements a customized online scheduling policy.

We present the scheduling of a Guidance, Navigation and Control (GNC)
application on the quad-core LEON4FT in ESA’s Next Generation Microprocessor
platform (NGMP) [8]. Section 2 summarizes background knowledge on the FPPN
model of computation. Section 3 introduces the TASTE toolset extensions to support
FPPNs and the TASTE2BIP model transformations and task graph extraction, which
enable the application’s scheduling based on appropriate interference models. Section
4 presents the scheduling of the GNC application and the paper concludes with an
overview of the exposed contributions.

2 Fixed Priority Process Networks

The FPPN [4] extends the reactive control models of computation by introducing
synchronization and pipelined execution for a set of processes (tasks), which
communicate data through channels. It allows the specification of time dependent, yet

deterministic, behaviour and real time task properties (sporadic or periodic activations
with deadlines), and can be scheduled on single or multiple processors with or
without priorities. The determinism is ensured by a functional priority relation
between the tasks that are executed in an order, which is determined first by the task
release times, i.e. when the tasks are invoked and secondly by the task priorities.

An FPPN consists of processes, data channels and event generators. The processes
represent subroutines with functional code featuring internal variables and ports
connected to their input/output channels. A subroutine invocation is referred to as a
job with bounded execution time, which is subject to worst-case execution time
(WCET) analysis. Every process is associated with an event generator, which can be
either periodic or sporadic. The data channels support non-blocking read and write
operations, which means that reading from an empty channel does not block the
reader; the returned data value is accompanied by a validity flag, i.e. a boolean
indicator of whether the data is valid. There are inter-process and external
(environment) channels of two possible types, FIFO or blackboard. The blackboard
remembers the last written value, which can be read multiple times.

Every process p has a deadline dp. An event generator’s sequence of timestamps τk
determines when the kth job of process p is “activated”; periodic processes are
activated with period Tp, whereas for sporadic processes Tp denotes the minimum
inter-arrival time. Each job’s execution has to be completed by Dk =τk+dp. We assume
that all simultaneous process activations are signaled synchronously and we consider
two variants of FPPN semantics. According to the zero-delay semantics the
processes’ execution has zero delay and since all deadlines can be met without
exploiting parallelism, we assume for simplicity that it takes place sequentially. The
deterministic ordering of non-blocking accesses to the shared variables between the
processes is ensured by a set of rules detailed in [4]. The zero-delay semantics allows
the functional simulation of the FPPN through its sequential execution. The real time
semantics defines how the FPPN is executed on embedded platforms; it is a relaxed
version of the zero-delay semantics, since it allows jobs to have any execution time,
as well as to start concurrently to each other at any time after their invocation.

For certain subclasses of FPPNs it is possible to statically derive a task graph,
which then serves as input to a scheduling algorithm. A task graph is a directed
acyclic graph TG(J,Ԑ) with nodes representing jobs J = {Ji} and edges Ԑ that are
called precedence edges, which constrain the job execution order. A job is
characterized by a tuple Ji =(pi, ki, Ai, Di, Ci), where pi is the process to which the job
belongs, ki is the job’s invocation count, Ai ∈ ℚ≥0 is the arrival time, Di ∈ ℚ+ is the
required time (absolute deadline) and Ci ∈ ℚ+ is the WCET.

3 Design and scheduling for a model of computation in TASTE

Fig. 1 delineates our model based design flow that integrates FPPNs within the
TASTE toolset [6], along with a timed automata modeling framework in BIP [7]
(parts in grey color depict our contribution) and its associated scheduling and code
generation tools. The latter ensure predictable timing behavior when the application is
executed on a multithreaded BIP Runtime Environment (BIB RTE). Specifically a

representation of the software is provided through the TASTE fronted tools (Interface
View, Data View, Deployment View), which have been amended to capture FPPN-
compliant models. The TASTE functions are assigned attributes that characterize the
type of FPPN node (e.g. blackboard, periodic process). Each process is associated
with a unique integer (the larger a number is the lower its priority) and a criticality
level (only HI and LO are currently supported), if we want to schedule the application
by taking into account multiple criticality levels [7]. Additionally, functional C/C++
code primitives are inserted in TASTE including also ASN.1 based data types.

Fig. 1. Model-based design and tool flow for FPPNs in TASTE.

The next step is the TASTE-to-BIP model transformation, where (i) the TASTE
FPPN is transformed to a BIP FPPN model and (ii) the TASTE attributes are used to
generate the task graph through graph rewriting. At this stage we take into account the
interference on shared software and hardware resources, which invalidates the
canonical WCET and schedulability analysis, due to a feedback influence. This step
involves the design of an interference model, as detailed in [7]. The schedule obtained
from the static scheduler together with the interference model is then translated into
parameters of the online-scheduler model that is specified in BIP. The joint
application and scheduler representation is then compiled into an executable. The
executable is linked with the resource manager BIP RTE and it can be executed on the
target platform on top of the real time operating system.

3 Case-Study: Guidance Navigation and Control Application

The described design flow was applied on the design and scheduling of a GNC
application that was ported onto ESA’s NGMP with the aim to utilize multiple cores

of the quad-core LEON4FT processor [8]. The main objective of a GNC application
is to effect the movement of the vehicles and provide the corresponding sensor and
controller with the necessary data. It comprises the Guidance Navigation Task
(Functional Priority = 4, Period = 500ms, Deadline = 500ms, WCET=22ms), the
Control Output Task (Functional Priority = 3, Period = 50ms, Deadline = 50ms,
WCET = 3ms) that sends the outputs to the appropriate spacecraft unit, the Control
FM Task (Functional Priority=2, Period=50ms, Deadline=50ms, WCET=8ms) which
runs the control and flight management algorithms, and the Data Input Dispatcher
Task (Functional Priority=1, Period=50ms, Deadline=50ms, WCET=6ms), which
reads, decodes and dispatches data to the right destination whenever new data from
the spacecraft’s sensors are available.

The TASTE-to-BIP tool transformed the TASTE Interface View models (XML
and C language) to an equivalent FPPN BIP model. The calculated hyper-period
(least-common multiple of periods) was H = 500ms. The Guidance Navigation and
Control Output Tasks start with time offsets 450ms and 30ms, respectively. This
information was inserted into the BIP model by manually modifying the default
design flow script. The task graph data was then passed to the BIP offline scheduler
tool, which estimated the load (utilization) to be 112% (thus requiring two compute
cores) and provided the time-triggered scheduling tables. This estimation took into
account the interference of the BIP engine and the precedence constraints. The last
step was to compile the BIP model, to link it with the BIP RTE and to execute it on
the quad-core LEON4FT processor. The executables were subsequently loaded and
executed on the LEON4FT board. Fig. 3 depicts the execution of the GNC model on
the NGMP, within a time frame equal to the hyper-period of 500ms plus another
50ms. The GNC application utilizes one core for the resource manager P20 (BIP RTE
and BIP controllers) and two computing cores for the application’s tasks. Process P1
corresponds to the Data Input Dispatcher Task, P2 to the Control FM Task, P3 to the
Control Output Task and P4 to the Guidance Navigation Task.

Fig. 2. Execution of the GNC application on LEON4FT.

Minor time shifts to the jobs execution time are noticed and this is due to the P20

overhead. Runtime overhead exists in every environment and designers should not
create too small tasks to avoid that the overhead is comparable to the computations.

4 Conclusion

The proposed design flow introduces a rigorous model-based design for embedded
systems with complex task dependencies and shared resource interference, which is
integrated with the ESA’s TASTE toolset. Task dependencies and shared resources
interference are arbitrated through dependency patterns according to the FPPN model
of computation. Experimental results demonstrated the efficacy of the proposed
design flow through the modeling and execution of a GNC application on the quad-
core LEON4FT processor.

As future work, we intend to support more than two criticality levels, and at the
TASTE-to-BIP model transformation level the use of additional languages such as
ITU-T SDL and Simulink. Furthermore, we also intend to utilize more TASTE design
capabilities by implementing test-bench wrappers using python test-benching.

References

1. Claraz, D., Grimal, F., Laydier, T., Mader, R., Wirrer, G.: Introducing Multi-Core at
Automotive Engine Systems. In: Embedded Real-Time Software and Systems. ERTSS
2014. Toulouse, France (2014)

2. Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability
and undecidability. Inf. Comput. 205(8), pp. 1149 – 1172. Elsevier (2007)

3. Chadli, M., Kim, J. H., Legay, A., Traonouez, L.-M., Naujokat, S., Steffen, B., Larsen, K.
G.: A Model-Based Framework for the Specification and Analysis of Hierarchical
Scheduling Systems. In: ter Beek M., Gnesi S., Knapp A. (eds) Critical Systems: Formal
Methods and Automated Verification, FMICS 2016. LNCS,	 vol. 9933. Springer, Cham
(2016)

4. Poplavko, P., Socci, D., Bourgos, P., Bensalem, S., Bozga, M.: Models for Deterministic
Execution of Real-time Multiprocessor Applications. In: Design, Automation & Test in
Europe Conference & Exhibition, pp. 1665 –1670, DATE 2015. Grenoble, France (2015)

5. Hugues, J., Zalila, B., Pautet, L., Kordon, F.: From the Prototype to the Final Embedded
System Using the Ocarina AADL Tool Suite. ACM Trans. on Emb. Comp. Syst. vol 7(4),
pp. 42:1 -- 42:25 (2008)

6. Perrotin, M., Conquet, E., Delange, J., Schiele, A., Tsiodras, T.: TASTE: A Real-time
Software Engineering Tool-chain Overview, Status, and Future. In: 15th International
Conference on System Design Languages, SDL Forum, pp. 26 – 37. Toulouse, France
(2011)

7. Poplavko, P., Kahil, R., Socci, D., Bensalem, S., Bozga, M.: Mixed-Critical Systems Design
with Coarse-Grained Multi-core Interference. In: Margaria T., Steffen B. (eds) Leveraging
Applications of Formal Methods, Verification and Validation: Foundational Techniques,
ISoLA 2016. LNCS, vol. 9952. Springer, Cham (2016)

8. GR-CPCI-LEON4-N2X: Quad-Core LEON4 Next Generation Microprocessor Evaluation
Board, http://www.gaisler.com/index.php/products/boards/gr-cpci-leon4-n2x

9. Radojevic, I., Salcic, Z.: Models of Computation and Languages. In: Embedded Systems
Design Based on Formal Models of Computation, pp 7 - 41, Springer (2011)

