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Abstract. Languages for embedded systems ensure predictable timing behavior 
by specifying constraints based on either data streaming or reactive control 
models of computation. Moreover, various toolsets facilitate the incremental 
integration of application functionalities and the system design by evolutionary 
refinement and model-based code generation. Modern embedded systems 
involve various sources of interference in shared resources (e.g. multicores) and 
advanced real-time constraints, such as mixed-criticality levels. A sufficiently 
expressive modeling approach for complex dependency patterns between real-
time tasks is needed along with a formal analysis of models for runtime 
resource managers with timing constraints. Our approach utilizes a model of 
computation, called Fixed-Priority Process Networks, which ensures functional 
determinism by unifying streaming and reactive control within a timed 
automata framework. The tool flow extends the open source TASTE tool-suite 
with model transformations to the BIP language and code generation tools. We 
outline the use of our flow on the design of a spacecraft on-board application 
running on a quad-core LEON4FT processor. 
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code generation, multicores. 

1   Introduction 

The model-based philosophy for embedded system design is grounded on the 
evolutionary building of a “prototype” using models [5], which support the analysis, 
the gradual refinement and the setting of real-time attributes that ensure a predictable 
timing behavior. For being able to analyze the models, they can be specified using 
languages based on formal models of computation [9], which allow the synthesis and 
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the optimization of behavior into an implementation solution. Such models provide 
syntax for describing dependencies between the runtime entities of a design and rules 
for computation of the behavior given the syntax. The well-known streaming models 
of computation are suitable for describing complicated data transfer functions, 
whereas the reactive control models – used in synchronous languages – are suitable 
for specifying complex control dependencies; the latter are compiled to sequential 
code as tasks, and classical schedulability methods can then be applied.  

However, in modern embedded systems the task dependencies are further 
complicated, due to various sources of interference in shared software and hardware 
resources (e.g. buses, DMAs and I/Os in multicores) and additional constraints, such 
as mixed-criticality levels, quality of service, dynamic voltage and frequency scaling. 
Thus, the design should ensure predictable timing behavior, while allowing adaptation 
to unexpected overload cases by dynamically reallocating resources.  

To this end, we present a rigorous design approach that integrates a recent model 
of computation, the Fixed Priority Process Networks (FPPNs) [4], with the TASTE 
toolset [6] and a timed automata analysis framework with “resource managers” [7], 
i.e. software functions that monitor utilization of compute resources and adapt the 
schedule in cases of exceptional shortage [2, 3]. The Fixed-Priority Process Networks 
combines the expressiveness of streaming and reactive control, retains the efficiency 
potential of parallel processing and ensures functional determinism, i.e. the program’s 
outputs are neither dependent on the tasks’ execution times, nor on their scheduling. 
The open source TASTE toolset supports the incremental model-based integration of 
application functionalities based on a system-level architecture description language, 
the AADL. We have extended TASTE towards enabling the design of FPPN 
programs and we have implemented a model transformation to a timed automata 
modeling framework in BIP, a language with formal operational semantics and code 
generation tools for execution engines ported in various embedded platforms. Our 
approach allows scheduling the program’s tasks, while taking into account their 
dependencies, as well as various sources of interference, through explicit interference 
models and resource managers; a resource manager is an integral part of an online 
scheduler that implements a customized online scheduling policy. 

We present the scheduling of a Guidance, Navigation and Control (GNC) 
application on the quad-core LEON4FT in ESA’s Next Generation Microprocessor 
platform (NGMP) [8]. Section 2 summarizes background knowledge on the FPPN 
model of computation. Section 3 introduces the TASTE toolset extensions to support 
FPPNs and the TASTE2BIP model transformations and task graph extraction, which 
enable the application’s scheduling based on appropriate interference models. Section 
4 presents the scheduling of the GNC application and the paper concludes with an 
overview of the exposed contributions. 

2   Fixed Priority Process Networks 

The FPPN [4] extends the reactive control models of computation by introducing 
synchronization and pipelined execution for a set of processes (tasks), which 
communicate data through channels. It allows the specification of time dependent, yet 



deterministic, behaviour and real time task properties (sporadic or periodic activations 
with deadlines), and can be scheduled on single or multiple processors with or 
without priorities. The determinism is ensured by a functional priority relation 
between the tasks that are executed in an order, which is determined first by the task 
release times, i.e. when the tasks are invoked and secondly by the task priorities.  

An FPPN consists of processes, data channels and event generators. The processes 
represent subroutines with functional code featuring internal variables and ports 
connected to their input/output channels. A subroutine invocation is referred to as a 
job with bounded execution time, which is subject to worst-case execution time 
(WCET) analysis. Every process is associated with an event generator, which can be 
either periodic or sporadic. The data channels support non-blocking read and write 
operations, which means that reading from an empty channel does not block the 
reader; the returned data value is accompanied by a validity flag, i.e. a boolean 
indicator of whether the data is valid. There are inter-process and external 
(environment) channels of two possible types, FIFO or blackboard. The blackboard 
remembers the last written value, which can be read multiple times.  

Every process p has a deadline dp. An event generator’s sequence of timestamps τk 
determines when the kth job of process p is “activated”; periodic processes are 
activated with period Tp, whereas for sporadic processes Tp denotes the minimum 
inter-arrival time. Each job’s execution has to be completed by Dk =τk+dp. We assume 
that all simultaneous process activations are signaled synchronously and we consider 
two variants of FPPN semantics. According to the zero-delay semantics the 
processes’ execution has zero delay and since all deadlines can be met without 
exploiting parallelism, we assume for simplicity that it takes place sequentially. The 
deterministic ordering of non-blocking accesses to the shared variables between the 
processes is ensured by a set of rules detailed in [4]. The zero-delay semantics allows 
the functional simulation of the FPPN through its sequential execution. The real time 
semantics defines how the FPPN is executed on embedded platforms; it is a relaxed 
version of the zero-delay semantics, since it allows jobs to have any execution time, 
as well as to start concurrently to each other at any time after their invocation. 

For certain subclasses of FPPNs it is possible to statically derive a task graph, 
which then serves as input to a scheduling algorithm. A task graph is a directed 
acyclic graph TG(J,Ԑ) with nodes representing jobs J = {Ji} and edges Ԑ that are 
called precedence edges, which constrain the job execution order. A job is 
characterized by a tuple Ji =(pi, ki, Ai, Di, Ci), where pi is the process to which the job 
belongs, ki is the job’s invocation count, Ai ∈ ℚ≥0 is the arrival time, Di ∈ ℚ+ is the 
required time (absolute deadline) and Ci ∈ ℚ+ is the WCET. 

3   Design and scheduling for a model of computation in TASTE   

Fig. 1 delineates our model based design flow that integrates FPPNs within the 
TASTE toolset [6], along with a timed automata modeling framework in BIP [7] 
(parts in grey color depict our contribution) and its associated scheduling and code 
generation tools. The latter ensure predictable timing behavior when the application is 
executed on a multithreaded BIP Runtime Environment (BIB RTE). Specifically a 



representation of the software is provided through the TASTE fronted tools (Interface 
View, Data View, Deployment View), which have been amended to capture FPPN-
compliant models. The TASTE functions are assigned attributes that characterize the 
type of FPPN node (e.g. blackboard, periodic process). Each process is associated 
with a unique integer (the larger a number is the lower its priority) and a criticality 
level (only HI and LO are currently supported), if we want to schedule the application 
by taking into account multiple criticality levels [7]. Additionally, functional C/C++ 
code primitives are inserted in TASTE including also ASN.1 based data types.  

 

 
Fig. 1. Model-based design and tool flow for FPPNs in TASTE. 

The next step is the TASTE-to-BIP model transformation, where (i) the TASTE 
FPPN is transformed to a BIP FPPN model and (ii) the TASTE attributes are used to 
generate the task graph through graph rewriting. At this stage we take into account the 
interference on shared software and hardware resources, which invalidates the 
canonical WCET and schedulability analysis, due to a feedback influence. This step 
involves the design of an interference model, as detailed in [7]. The schedule obtained 
from the static scheduler together with the interference model is then translated into 
parameters of the online-scheduler model that is specified in BIP. The joint 
application and scheduler representation is then compiled into an executable. The 
executable is linked with the resource manager BIP RTE and it can be executed on the 
target platform on top of the real time operating system.  

3   Case-Study: Guidance Navigation and Control Application 

The described design flow was applied on the design and scheduling of a GNC 
application that was ported onto ESA’s NGMP with the aim to utilize multiple cores 



of the quad-core LEON4FT processor [8]. The main objective of a GNC application 
is to effect the movement of the vehicles and provide the corresponding sensor and 
controller with the necessary data. It comprises the Guidance Navigation Task 
(Functional Priority = 4, Period = 500ms, Deadline = 500ms, WCET=22ms), the 
Control Output Task (Functional Priority = 3, Period = 50ms, Deadline = 50ms, 
WCET = 3ms) that sends the outputs to the appropriate spacecraft unit, the Control 
FM Task (Functional Priority=2, Period=50ms, Deadline=50ms, WCET=8ms) which 
runs the control and flight management algorithms, and the Data Input Dispatcher 
Task (Functional Priority=1, Period=50ms, Deadline=50ms, WCET=6ms), which 
reads, decodes and dispatches data to the right destination whenever new data from 
the spacecraft’s sensors are available. 

The TASTE-to-BIP tool transformed the TASTE Interface View models (XML 
and C language) to an equivalent FPPN BIP model. The calculated hyper-period 
(least-common multiple of periods) was H = 500ms. The Guidance Navigation and 
Control Output Tasks start with time offsets 450ms and 30ms, respectively. This 
information was inserted into the BIP model by manually modifying the default 
design flow script. The task graph data was then passed to the BIP offline scheduler 
tool, which estimated the load (utilization) to be 112% (thus requiring two compute 
cores) and provided the time-triggered scheduling tables. This estimation took into 
account the interference of the BIP engine and the precedence constraints. The last 
step was to compile the BIP model, to link it with the BIP RTE and to execute it on 
the quad-core LEON4FT processor. The executables were subsequently loaded and 
executed on the LEON4FT board. Fig. 3 depicts the execution of the GNC model on 
the NGMP, within a time frame equal to the hyper-period of 500ms plus another 
50ms. The GNC application utilizes one core for the resource manager P20 (BIP RTE 
and BIP controllers) and two computing cores for the application’s tasks. Process P1 
corresponds to the Data Input Dispatcher Task, P2 to the Control FM Task, P3 to the 
Control Output Task and P4 to the Guidance Navigation Task.  

 
Fig. 2. Execution of the GNC application on LEON4FT. 

 
Minor time shifts to the jobs execution time are noticed and this is due to the P20 

overhead. Runtime overhead exists in every environment and designers should not 
create too small tasks to avoid that the overhead is comparable to the computations. 



4   Conclusion  

The proposed design flow introduces a rigorous model-based design for embedded 
systems with complex task dependencies and shared resource interference, which is 
integrated with the ESA’s TASTE toolset. Task dependencies and shared resources 
interference are arbitrated through dependency patterns according to the FPPN model 
of computation. Experimental results demonstrated the efficacy of the proposed 
design flow through the modeling and execution of a GNC application on the quad-
core LEON4FT processor.   

As future work, we intend to support more than two criticality levels, and at the 
TASTE-to-BIP model transformation level the use of additional languages such as 
ITU-T SDL and Simulink. Furthermore, we also intend to utilize more TASTE design 
capabilities by implementing test-bench wrappers using python test-benching. 
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