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ABSTRACT 

This paper presents the HW-SW co-design approach 

followed to tackle the design of the Hazard Detection 

and Avoidance (HDA) system breadboarding for the 

Lunar Lander ESA mission, undertaken given the fact 

that novel GNC technologies used to promote 

autonomous systems demand processing capabilities 

that current (and forthcoming) space processors are not 

able to satisfy. The paper shows how the current system 

design has been performed in a process in which the 

original HDA functionally validated design has been 

partitioned between SW (deemed for execution in a 

microprocessor) and HW algorithms (to be executed in 

an FPGA), considering the performance requirements 

and resorting to a deep analysis of the algorithms in 

view of their adequacy to HW or SW implementation. 

 

1. LUNAR LANDER HDA DESIGN  

The present and future needs of the Space exploration 

missions include increasing requirements for system 

autonomy, in order to cope with the challenging 

conditions and scenarios that can be presented in these 

missions (planetary landing, NEO approach and 

landing, deep space missions, etc.). This has caused 

advances in the GNC and HDA technologies devoted to 

handle these autonomy needs, usually involving the use 

of heavy processing algorithms related to solving 

complex algorithmic problems in real-time conditions, 

as e.g. extraction of relevant information from images 

obtained during the mission. Typical on-board data 

handling space processors are not well suited to this 

type of problems as they have performances much lower 

than the necessary and thus, alternative solutions must 

be found and deployed. In this scope, the use of Elegant 

BreadBoarding solutions is necessary to evaluate and 

mature these technologies before the most critical steps 

of the mission. In this paper we will present one of such 

Breadboardings, developed in the scope of the Lunar 

Lander HDA system and composed by an advanced 

Power PC 750 processor (PPC, compatible with 

equivalent space qualified processor models), supported 

by a co-processing accelerator FPGA. The presented 

system design has been performed through a HW/SW 

co-design process, starting from the (base) functionally 

validated HDA design which had been developed in 

previous phases of the mission [1] and using it as an 

executable specification. During the process, the 

mentioned HDA system has been deeply analysed and 

partitioned between SW algorithms and HW algorithms, 

based in the adequacy of each algorithm to be 

implemented in HW or SW, together with the analysis 

of the performance improvements to be achieved by 

each modification, the non-functional requirements of 

the breadboarding (e.g. the required interfaces) or the 

maturity of the design of each specific element of the 

system. The use of the HW/SW co-design approach was 

necessary as the results of previous prototyping 

activities [2] had demonstrated that this type of 

algorithms could not be executed within its required 

deadline (at present, 10 seconds for the entire execution 

of an HDA cycle) by using the current space 

computation technology (this point was further assessed 

during the testing activities performed in the project). 

Thus, the need for some type of accelerating co-

processor was confirmed, being the FPGA approach one 

of the main alternatives for the implementation of image 

co-processing techniques as those used in the project.  

The HDA base design was performed in MATLAB/ 

Simulink, although it includes as well large portions of 

legacy or hand-written code.  This lead to consider that 

the best approach for the implementation of the 

breadboard was twofold:  

- The implementation of the SW parts of the system 

are performed mainly through the use of autocoding 

techniques (which allow a great degree of flexibility 

but providing a high quality result), or by directly 

extracting already existing Legacy C-functions;  

- The HW design and implementation has been 

performed through manual VHDL coding, as there 

were several reasons to avoid the use of automated 

coding techniques to HDL, including mainly the 

need to avoid the autocoding problems caused by 

the legacy code used in the model and the effective 

use of the limited FPGA resources, which have 

been largely consumed even by the very optimised 

design performed. In addition, the used approach 



 

has eased a higher degree of compliance with the 

applicable ESA standards and guides.  

As a side effect to the decisions explained, the HW 

implementation of the algorithms has implied in many 

cases to re-engineer the original algorithms in order to 

allow their effective implementation in HW, as the 

original algorithms used were not suitable for it. The 

modified algorithms were validated with respect to the 

HDA executable baseline, through the execution of 

specific Monte Carlo tests, when necessary. 

Besides, commercial IP cores have been integrated in 

the FPGA to perform the functions concerning with the 

communications, such as the communication with the 

Power PC computer (cPCI) or with the system sensors 

(Navigation Camera and LIDAR) through Spacewire. 

 

1.1. HDA Functional Architecture 

In summary, the main objectives of the Lunar Lander 

(LL) HDA system functions are to detect several types 

of hazards from the lunar terrain (by using images and 

elevation data -DEM- obtained respectively from the 

Camera and LIDAR sensors) and to select a landing 

zone that fulfils the mission needs in both safety aspects 

and mission performance (e.g. the landing site must be 

reachable within the manoeuvrability constraints of the 

spacecraft). The new landing site (LS) will be provided 

to the LL GNC system through a retargeting command, 

when appropriate.    

In accordance to this description, the HDA can be 

divided in the following main functions, whose 

functionality is graphically depicted in Fig. 1: 

Equipment

Functional Block

I/O from non

HDA

I/O from HDA

GNC

PIL.1 HM PIL.2

LIDAR

Camera

Selected LS position

Retargeting Flag
Navigation Estimates

LIDAR Image

Image

Attainable Retargeting Map

Hazard Map

ROI

Ground

Coords

ROI

Ground Coords

Figure 1: HDA Functional Architecture 

 

- PIL.1 – Attainable Region: This function is 

responsible for determining the area of the terrain 

that can be reached by the lander (ROI), and 

associate a reachability score to each LS available 

inside this area (Attainable Retargeting Map).  

- HM – Hazard Mapping: Hazard mapping is the 

process of assigning a hazard score to each LS 

visible in the sensors’ FoV which measures how 

risky it is for landing. Hazards are computed within 

the region of interest built by PIL.1 around the 

candidate landing site. 

- PIL.2 – Decision Making: This function is 

responsible for the retargeting decision process. 

Taking as inputs the reachability and hazard level 

assessments done respectively by PIL.1 and HM, a 

decision is made on the best LS, which is provided 

to the G(N)C system if a retargeting is decided. 

 

1.2. HW-SW Co-design Process 

The HW-SW co-design process consists in the 

allocation to HW or SW of the different functions 

implemented by the HDA system. As explained in 

section 1, several factors affect to such decision:  

- Functions that directly use data from the sensors are 

initially allocated to the FPGA, since the sensor 

data is received there through the system external 

interfaces. Thus, it has been considered that 

performing the entire sensor data processing in the 

FPGA would define a less complex architecture.  

- Functions with potentially high processing demand 

and high parallelization possibilities are allocated to 

the FPGA. This is typically the case for the IP 

functions, whose processing can be pipelined by 

windows, rows, chunks or even pixels.  

- Dependencies between functions allocated in 

different units (i.e. processor and FPGA) should be 

reduced to avoid communication problems between 

modules and delays. Two functions strongly 

coupled are recommended to be implemented 

together in order to reduce the communication 

overhead, simplifying also the architecture.  

- Complex functions containing decision trees with 

large number of paths are recommended for their 

implementation in the processor, as implementing 

complex decision making into an FPGA can be 

cumbersome and not efficient (the FPGA 

implementation of determined algorithms show 

none or small improvement in comparison with a 

more traditional software implementation).  

- The use of complex mathematical or trigonometric 

functions is discouraged in the FPGA, even more as 

the selected FPGA has a limited number of specific 

resources as those rapidly consumed by the 

implementation of these functions (e.g. MAC units). 

Furthermore, the need of programming in a 

technology-independent VHDL code prevents using 

some of the most advanced characteristics provided 

by the selected FPGA and the privative technology-

specific implementation of these functions. Also in 

this category, it is necessary to consider carefully 

the precision and ranges of the data used and the 

produced results. The need of implementing Fixed 

Point solutions into the FPGA can limit the 

precision of the results obtained, which is 

particularly important in some type of high-

precision algorithms.  

 

The final HW/SW allocation is shown in Fig.2. The 

functions allocated in FPGA are: 



 

- Sensor data reception and pre-processing: 

Reception and pre-processing of all sensor data 

(LIDAR and NAVCAM) is performed in the 

FPGA.  

- Hazard Mapping: includes Matching, Shadow 

Mapping, Slope Mapping, Roughness Mapping and 

Sensor data Fusion functions. These modules are 

fully embedded into the FPGA, given their 

intensive use of the images (from camera and 

LIDAR) and associated high computational cost of 

the mapping and fusion functions, together with 

their highly parallelizable characteristics.  

 

The functions selected to be executed on the PPC are: 

- Distance Cost Map (DCM): this function was 

initially selected to be implemented in FPGA 

following the process described above. However, 

the deep analysis of the function recommended not 

implementing the algorithm in the FPGA, especially 

given the type of mathematical operations used. The 

main reasons to not implement this algorithm in the 

FPGA are summarized in the following bullets: 

-Some computations do not seem feasible to be 

implemented in fixed-point format.  

-The module requires a large amount of 

multiplications to be performed in sequence. For 

every multiplication there is a loss of accuracy due 

to truncation. Solutions to reduce the loss of 

accuracy, such as normalization or using multiple 

precision arithmetic, are very expensive in terms of 

resources and cannot be alleviated without strongly 

penalizing performance, since these operations are 

in the core of the pipeline processing.  

-Some parts of the module require random 

addressing, this kind of access to memory typically 

reduces performance by more than one order of 

magnitude, destroying all the performance benefits 

that could be achieved in a FPGA with respect to a 

microprocessor.  

-The DCM function requires several divisions, 

square roots and a “tanh” operation, which cannot 

be efficiently implemented in a FPGA. To avoid 

performance bottlenecks, they should be 

implemented in pipeline mode, thus consuming a 

large amount of resources. Taking into account 

these considerations, it is quite possible that the 

FPGA resources would run out. 

- PIL1: includes Guidance Cost Map and Attainable 

Retargeting Map computations. PIL1 manages large 

amount of data, receives several maps and merges 

these maps in a final map. The analysis of this 

algorithm shows that its design does not allow a 

pipelined processing, as it produces the maps above 

in a fully serial approach, merging the results at the 

end of the processing and consuming a large 

amount of resources. In addition, the algorithm 

implements a series of high precision computations, 

depending on complex mathematical formulae. In 

case of need to implement this algorithm in FPGA, 

it should be analysed and re-engineered in detail in 

order to adapt it to a HW implementation. 

NOTE: It must be remarked that the FPGA cannot 

store large amounts of data. Therefore, it is assumed 

that input arrays are uploaded in serial mode and 

processed in pipeline mode as they arrive. 

Similarly, output arrays are downloaded in serial 

mode just as they are produced. Buffering may be 

used to synchronize pipeline stages and avoid 

pipeline stalls. 
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Figure 2: HDA Hardware Allocation 

 

 



 

- PIL2: includes generation of Risk Map, Global 

Map and Decision Making. Same justification than 

PIL1. In addition, the nature of this algorithm as it 

is implemented at present shows that a pipelined 

approach is not possible. Further analysis shows 

also that the PIL2 algorithms will need to be 

adapted and improved in future phases, which 

discourages as well the FPGA implementation due 

to efficiency reasons.  

 

The next step was to define the sequence of activities to 

perform between the functions allocated in the FPGA 

and the functions allocated in the PPC in order to obtain 

the Landing Site and the Retarget Flag, starting since 

the reception of the Navigation Data and the outputs of 

the external Guidance and Control element (GC). The 

sequence of activities, displayed in Fig. 3, shows the 

nominal execution once the HDA has been initialized 

and configured. The list of activities listed below are 

composed mainly by the execution of the algorithms 

that compose the HDA (see Fig.2) but also activities 

related to the data handling and interface management: 

 

1.Receive, Store and Forward to GC the Navigation 

Data: Reception on PPC of the simulated system 

Navigation Data at 10Hz and forward to G&C. 

2.Receive and Store GC Data: GC control data is 

received and the HDA_Mode is evaluated to decide if 

the initiation of HDA algorithm has to be performed. 

3.RMAP Commands Preparation: The commands to 

request the acquisition of LIDAR and Camera data are 

prepared in the PPC and sent to FPGA. 

4.Send RMAP Commands: The FPGA sends through 

dedicated SpaceWire buses the RMAP commands to 

request the LIDAR and Camera data. 

5.Receive and Store Data: The FPGA waits until the end 

of reception through the SpaceWire buses of the DEM 

and Image messages (from LIDAR and NAVCAM 

models respectively) and stores the data in the board’s 

memory, to be used in the PPC side. 

6.HDA HW: LIDAR Preprocessing: Convert the 

LIDAR DEM to Landing Site Frame. 

7.HDA SW: Calculate PPC Part. 1: Preprocessing of 

Navigation data and calculation of the Distance Cost 

Maps (DCM), which are provided to the FPGA. 

8.HDA HW: Calculate Hazard Maps, by using the DCM 

and the Camera / LIDAR images.  

9.HDA SW: Calculate PPC Part. 2: Calculation of the 

PIL1 (except DCM) in parallel with the calculation on 

the FPGA (HDA_HW) of the Hazard Maps. 

10.HDA SW: Calculate PPC Part. 2: Calculation of 

PIL2 functions. 

11.Send LS: the last step is to send the results of the 

HDA to the GC, through a dedicated SpaceWire bus.  

 
Figure 3: HDA sequence of activities 

 

2. HW IMPLEMENTATION 

The HDA Breadboard Hardware architecture and 

components are presented in Fig.4 including the 

aforementioned Power PC processor, FPGA and 

External/Internal interfaces. 

The FPGA component is provided through a Gaisler GR 

development board, equipped with a Xilinx Virtex 4 

FPGA and an external SDRAM memory with up to 256 

MBytes. This board is connected to the Power PC 

computer (an ESD development component, 

representative of the final MAXWELL space qualified 

processor selected for the final system implementation) 

through a cPCI interface. SpaceWire physical 

connectivity is provided directly to the FPGA for 

reception of the external sensor data (an independent 

bus for each sensor, which are simulated by dedicated 

camera and LIDAR models processing image data 

obtained from PANGU simulator) and to the Power PC 

system for interfacing to the Lunar Lander GNC. 

Fig.4 shows as well the components (both new 

developments and COTS) included in the FPGA System 

on Chip (SoC), and communicated through an internal 

AMBA bus. These components include:  

- The SpaceWire Controller module, implementing 

the logic for proper access to the SpW IP cores.  

 



 

Figure 4: HDA HW System High-Level Architecture 

 

- The IMAGE and LIDAR DMA components in 

charge of decoding and unpacking the 

IMAGE/LIDAR DEM, which will be transferred to 

the Power PC processor through an ad-hoc memory 

buffer (accessed through cPCI), for PIL processing.  

- The Memory Controller and cPCI core manage the 

interfaces with the RAM memory and cPCI bus.  

- The HDA IP core, main development of the project, 

which implements the HDA functions assigned to 

Hardware, as described in the previous sections.  

 

The HDA IP Core is connected to the AMBA bus 

through an HDA IF Adapter module, whose main 

purpose is to keep the HDA IP Core interface 

independent of the rest of components and how they are 

connected (thus, the HDA IP Core is kept portable to 

other platforms or SoC architectures). The HDA IP core 

reads the Navigation, IMAGE and LIDAR DEM from 

the External memory and performs sensor data 

matching. Afterwards, in parallel, the Hazard Maps are 

computed.  This parallelisation is further increased by 

the use of processing pipelines in the FPGA, which 

calculate sections of the maps from the initial images 

received. The outputs of the different mapping 

processing are aligned and fed to the Map Fusion 

component, whose result is finally transferred to the 

PPC for PIL.2 processing. Intermediate results of the 

processing chain are stored on memory when needed.  

HDA IP Core Control and Status registers are made 

visible to the PPC, which controls the entire co-

processing unit in accordance to the algorithm steps.  

Thus, HDA_HW_IP is completely managed by the PPC 

through the cPCI interface. HDA_HW_IP could also 

read and write image data to the External RAM.  

Communication between the elements inside the FPGA 

is performed through the use of an AMBA bus 

compliant with AMBA Bus 2.0 specification, and its 

AHB and APB buses for data transfer and core control.  

 

3. VALIDATION OF HW IMPLEMENTATION 

AND RESULTS 

The original HDA model has been used as part of the 

system specification along design phase, together with 

the HDA closed-loop simulator existing from previous 

phases. These facilities have been used as well for the 

validation of the Breadboarding implementation, from 

unit testing level of the HW and SW modules to the 

final validation of the system, through the generation of 

test vectors and golden data results in front of which the 

system results have been compared. Furthermore, 

Monte Carlo campaigns of the entire system have been 

performed in the Simulator in order to validate all 

specific parts of the code that changed from the 

algorithmic point of view with respect to the original 

solution, to accommodate these specific algorithms to 

alternative numeric algorithms better suited for FPGA 

implementation. The new alternative algorithms were 

implemented in MATLAB/Simulink or C code, 

introduced in the simulator and validated in MC 

campaigns before go-ahead for VHDL implementation. 

 



 

Validation of the HW implementation is mainly focused 

on the HDA_HW_IP Core. The validation phase 

considers the following main objectives: 

- Validate the compliance of the HDA_HW_IP 

design with the original HDA model 

implementation. 

- Measure the accuracy of the results of the 

HDA_HW_IP with respect to the original HDA 

model. 

- Measure the performance of the HDA_HW_IP 

design. 

The validation phase included the following tasks, 

developed in sequence:  

- Basic submodule validation: Submodules are tested 

and debugged before integration in the IP Core.  

- HDA_HW_IP Unitary Function Tests. 

- HDA_HW_IP Integration Tests. 

- FPGA validation: HDA_HW_IP Design validation 

in the real hardware.  

Following a top-down hardware design methodology, 

the design is thoroughly validated by functional 

simulation before going into the FPGA implementation.  

Simulation results are compared to the original HDA 

MATLAB/Simulink/C implementation.  

 

Simulation Tests 

Simulation is the basic mechanism for unitary tests. It is 

also used for HDA Integration tests when required.  

Simulation tests use input data from the HDA baseline 

implementation and automatically compare results with 

the original HDA model implementation. 

 

  
 

 
Figure 5: Example of HDA HW output: Variable 

HAZARD_MAP (far range) 

 

Hardware Tests 

Hardware tests are performed upon integration of the 

HDA IP Core in the FPGA. Hardware tests generally 

consist on repeating the simulation tests on board. 

Specifically, hardware tests are required to validate the 

external FPGA interfaces and to accelerate the 

execution of large sets of test cases. Fig.5 and Fig.6  

show an example of the outputs that HDA HW sends to 

HDA SW: the variable HAZARD MAP in close range, 

represented as a map that reflects the overall hazard 

level of the candidate landing sites. The image in top-

left shows the expected results, the image in the top-

right shows the results obtained in HW, and the image 

on the bottom shows the difference between them. The 

analysis of the results showed that the errors were 

negligible or located near areas of already identified 

Hazard (thus, far from the safe landing sites). 

 

 
 

 
 

Figure 6: Example of HDA HW output: Variable 

HAZARD_MAP (close range) 

 

Worst-case error statistics are extracted from the 

analysis performed, to quantify the effect of the FPGA 

fixed-point implementation (and other errors) in the 

overall HDA implementation (i.e. with conversions 

from doubles to fixed point in the inputs/outputs). These 

error statistics are then used in the general HDA testing 

campaigns, performed through Monte Carlo 

simulations, ensuring that 99% LS decisions are correct. 

 

4. SW IMPLEMENTATION  

The class diagram shown in Fig.7 represents the High 

Level Architectural Design for the HDA SW 

component, allocated to the system Power PC processor 

and run on top of the VxWorks operating system. This 

component is in charge of performing the HDA SW 

activities, both related to performing and controlling the 

HDA algorithms and to the additional functions 

necessary to communicate with the Lunar Lander GNC 

computer or the Navigation data provider, and providing 

debug or control data. Three main groups of modules or 

layers are shown:   

- HDA Layer Service: The module is in charge of 

managing the external communications of the 

system, managing the hardware drivers and 

independent to the rest of the Software functions 

from the underlying interface hardware. This layer 

is composed by sporadic tasks that waits the 



 

reception of the inputs data from the Navigation 

simulator and from the  Guidance and Control 

- HDA Application: The module is in charge of 

controlling the HDA execution and managing the 

application data necessary to produce a landing site 

retargeting, estimated navigation data and the data 

sets exchanged between the HDA SW and HW. 

This layer is in charge of managing the system data 

flow and controlling the execution of the HDA 

algorithms. It waits the reception of the simulated 

Navigation data and G(N)C data and analyses them  

in order to command the HDA process execution; 

First, it obtains feedback information from the 

G(N)C and Navigation, then it checks if the data 

indicates that shall be calculated the Landing Site. 

Once the HDA has been started, this layer is in 

charge of commanding the execution of the HDA 

SW, sending the results of the HDA SW to the 

FPGA through the PCI and commanding the HW to 

start the processing. When the HDA HW finalizes 

the processing of the data, the HDA Application 

will command the retrieval of the data results, 

providing them to the HDA SW to continue its 

activities and confirm the landing site or calculate a 

new possible, which will be sent to the G(N)C 

through the SpaceWire interface.  

- HDA SW: The module that performs the Hazard 

Detection and Avoidance algorithms and drives the 

execution of the component, or application 

Software Component (SWC). These functions 

derive from the HW/SW co-design, where the HDA 

functions were partitioned into HW and SW. 

The HDA SW activities are assigned to independent 

tasks depending on the Software design, frequency 

requirements and concurrency needs. 

 

 
Figure 7: HDA HW System High-Level Architecture 

 

The scheduling analysis of the system has provided the 

inputs necessary to perform this assignment, with the 

main objective of meeting the real time requirements of 

the system such as the HDA execution time deadlines. 

Synchronization mechanisms are used as well when 

necessary to assure the integrity of the data sets, which 

can be compromised by the simultaneous access of 

more than one task.  

The synchronization between the FPGA and the PPC 

has been kept as simple as possible, prioritising 

asynchronous signalling over clock-based 

synchronization. 

 

5. SYSTEM VALIDATION AND RESULTS 

The HDA validation approach is based in the injection 

in open loop of pre-recorded inputs (previously 

generated in the HDA functional simulator or FES) for 

different test cases / reference trajectories, studied to 

cover the different situations that can be faced by the 

system: since the simple trajectory with no retargeting 

needs, to more complex test cases where several new LS 

are selected. For the final validation steps, three 

reference scenarios were selected (Nominal spacecraft 

mass, Maximum mass and Minimum mass). In these 

scenarios the HDA is executed in two different phases: 

- Far range phase: Far range zone with ranges 

between 2500m and 1500m. The LIDAR model is 

parameterized for far range conditions, i.e. ground 

resolution of 2.5m. 

- Close range phase: Close range zone with ranges 

between 300m and 150m. The LIDAR model is 

parameterized for close range conditions, i.e. 

ground resolution of 0.25m. 

 

The process of HDA validation is split for three sets of 

test campaigns: 

- Unitary tests of the HDA: Performed to ensure that 

BB implementation of the HDA units (HW and 

SW) is correct, and later to check if integration into 

complete BB environment is correct. Reference data 

generated for unitary and integration tests are the 

same, with the difference that during (step-wise) 

integration tests the inputs are generated in BB 

environment. Although HDA is previously 

validated in functional engineering simulator using 

NAV performance model (Astrium), the approach 

for unitary/integration tests is done using ideal 

navigation inputs (as it simplifies the analysis 

process of internal HDA algorithms). 

- Integration test for the HDA-HW and HDA-SW: 

Performed to ensure that HDA BB implementation 

of the HDA HW and HDA SW is correct. 

- Integration tests of the HDA/G(N)C: Performed to 

ensure that the whole BB HDA implementation is 

correctly integrated in BB environment. Reference 

data is generated on functional engineering 

simulator using NAV performance model (Astrium) 

and implementing sensor delays  

 

The outputs produced by the entire HDA system are 

compared with the outputs produced by the HDA 

functional / reference model in order to perform the 

following validations:  



 

- Real time functional performance validation: This 

validation is based on comparison of the results 

generated by the HW/SW functional design model 

respect the Hardware/Software implementation 

results, in an open loop testing approach. The 

“functional performance” is measured by 

comparing the results of the HDA (mainly the 

newly selected landing sites) and evaluating the 

differences obtained.  Fig.8 shows an example of 

correct HDA decisions (safe and with 2.7 footprint 

margin) over a map with safe and unsafe zones. 

- Resource performance validation: The performance 

of the HDA system in real time and resources 

aspects is measured by the computation of several 

budget figures (different in Hardware and 

Software), which include the Worst case execution 

time (WCET) of the composed HW/SW system, for 

the Nominal and Worst-case reference test cases 

defined. This WCET includes the complete 

processing since the start of the HDA cycle until the 

production of a final result (and passing through the 

sensor commanding and sensor data acquisition and 

processing, the computation of the hazard maps, the 

piloting functions, etc.). The total HDA execution 

times including all the activities defined in Fig.3 are 

shown in Tab. 1 below, in seconds. 

 

Table 1: HDA Timing 

Test Case Far (sec) Close (sec) 

Nominal spacecraft mass 7,4828 9,6368 

Maximum  spacecraft mass 7,481 8,973 

Minimum spacecraft mass 7,4826 9,4816 

 

The same approach has been followed to validate the 

unitary implementation of the HW and SW modules, as 

well as the integration of the independent parts. 

 

 
Figure 8: Example of HDA final decision 

 

6. CONCLUSIONS 

The precise analysis and later implementation in 

hardware of specific parts of the functional Lunar lander 

HDA algorithms has allowed a significant reduction of 

the system execution time, while keeping results 

accuracy. The total WCET of the HDA is around two 

seconds in the entire execution of the HDA HW which 

is a dramatic improvement from the results of the 

execution of the same algorithms in SW. However, 

along the development of the project it was also 

demonstrated that not all the SW is adequate for HW 

implementation, due to feasibility, efficiency or 

complexity reasons which had to be analyzed with care.  

The implementation of the HDA algorithms in a 

HW/SW co-designed approach, using the system model 

as executable specification and validation platform, has 

proved as a successful solution from the point of view 

of both, performance and functional results. 

Finally the BB activity has increased the TRL level of 

the HDA subsystem to TRL 4, or TRL 4/5 for the 

integrated G(N)C+HDA subsystems correctly operating 

together in a HW and navigation simulated environment 

(i.e.: simulated image / DEM generation, obtained 

through PANGU tool and camera/LIDAR models).  

 

As final conclusion HW/SW co-design and partitioned 

implementation has been demonstrated to be a good 

solution for certain systems which involves the use of 

heavy processing algorithms related to solving complex 

algorithmic problems in real-time conditions, but it is 

important remark that this process demands a complex 

and costly effort, which should not be underestimated. 
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