

A HW-SW CO-DESIGNED SYSTEM FOR THE LUNAR LANDER

HAZARD DETECTION AND AVOIDANCE BREADBOARDING

Pedro Palomo
(1)

, Antonio Latorre
(1)

, Carlos Valle
(1)

, Sergio Gómez de Agüero
(1)

, Miguel Hagenfeldt
(1)

, Baltazar

Parreira
(2)

, Almudena Lindoso
(3)

, Marta Portela
(3)

, Mario García
(3)

, Enrique San Millán
(3)

, Yuri Zharikov
(3)

, Luis

Entrena
(3)

(1)
Deimos Space, Ronda de Poniente 19, 28760 Tres Cantos, Spain. Phone/Fax (+34) 91 806 34 50/51.

{pedro.palomo, antonio.latorre, carlos.valle, sergio.gomezdeaguero, miguel.hagenfeldt}@deimos-space.com
(2)

Deimos Engenharia, Av. D. João II, Lote 1.17.01 - 10º, 1998-023 Lisboa, Portugal. Phone (+351) 21893 3010.

baltazar.parreira@deimos.com.pt
(3)

Universidad Carlos III de Madrid, Conserjería Edificio Betancourt, c/Butarque 1, 28911 Leganés.

{alindoso, mportela, mgvalder, quique, yzhariko, entrena}@ing.uc3m.es

ABSTRACT

This paper presents the HW-SW co-design approach

followed to tackle the design of the Hazard Detection

and Avoidance (HDA) system breadboarding for the

Lunar Lander ESA mission, undertaken given the fact

that novel GNC technologies used to promote

autonomous systems demand processing capabilities

that current (and forthcoming) space processors are not

able to satisfy. The paper shows how the current system

design has been performed in a process in which the

original HDA functionally validated design has been

partitioned between SW (deemed for execution in a

microprocessor) and HW algorithms (to be executed in

an FPGA), considering the performance requirements

and resorting to a deep analysis of the algorithms in

view of their adequacy to HW or SW implementation.

1. LUNAR LANDER HDA DESIGN

The present and future needs of the Space exploration

missions include increasing requirements for system

autonomy, in order to cope with the challenging

conditions and scenarios that can be presented in these

missions (planetary landing, NEO approach and

landing, deep space missions, etc.). This has caused

advances in the GNC and HDA technologies devoted to

handle these autonomy needs, usually involving the use

of heavy processing algorithms related to solving

complex algorithmic problems in real-time conditions,

as e.g. extraction of relevant information from images

obtained during the mission. Typical on-board data

handling space processors are not well suited to this

type of problems as they have performances much lower

than the necessary and thus, alternative solutions must

be found and deployed. In this scope, the use of Elegant

BreadBoarding solutions is necessary to evaluate and

mature these technologies before the most critical steps

of the mission. In this paper we will present one of such

Breadboardings, developed in the scope of the Lunar

Lander HDA system and composed by an advanced

Power PC 750 processor (PPC, compatible with

equivalent space qualified processor models), supported

by a co-processing accelerator FPGA. The presented

system design has been performed through a HW/SW

co-design process, starting from the (base) functionally

validated HDA design which had been developed in

previous phases of the mission [1] and using it as an

executable specification. During the process, the

mentioned HDA system has been deeply analysed and

partitioned between SW algorithms and HW algorithms,

based in the adequacy of each algorithm to be

implemented in HW or SW, together with the analysis

of the performance improvements to be achieved by

each modification, the non-functional requirements of

the breadboarding (e.g. the required interfaces) or the

maturity of the design of each specific element of the

system. The use of the HW/SW co-design approach was

necessary as the results of previous prototyping

activities [2] had demonstrated that this type of

algorithms could not be executed within its required

deadline (at present, 10 seconds for the entire execution

of an HDA cycle) by using the current space

computation technology (this point was further assessed

during the testing activities performed in the project).

Thus, the need for some type of accelerating co-

processor was confirmed, being the FPGA approach one

of the main alternatives for the implementation of image

co-processing techniques as those used in the project.

The HDA base design was performed in MATLAB/

Simulink, although it includes as well large portions of

legacy or hand-written code. This lead to consider that

the best approach for the implementation of the

breadboard was twofold:

- The implementation of the SW parts of the system

are performed mainly through the use of autocoding

techniques (which allow a great degree of flexibility

but providing a high quality result), or by directly

extracting already existing Legacy C-functions;

- The HW design and implementation has been

performed through manual VHDL coding, as there

were several reasons to avoid the use of automated

coding techniques to HDL, including mainly the

need to avoid the autocoding problems caused by

the legacy code used in the model and the effective

use of the limited FPGA resources, which have

been largely consumed even by the very optimised

design performed. In addition, the used approach

has eased a higher degree of compliance with the

applicable ESA standards and guides.

As a side effect to the decisions explained, the HW

implementation of the algorithms has implied in many

cases to re-engineer the original algorithms in order to

allow their effective implementation in HW, as the

original algorithms used were not suitable for it. The

modified algorithms were validated with respect to the

HDA executable baseline, through the execution of

specific Monte Carlo tests, when necessary.

Besides, commercial IP cores have been integrated in

the FPGA to perform the functions concerning with the

communications, such as the communication with the

Power PC computer (cPCI) or with the system sensors

(Navigation Camera and LIDAR) through Spacewire.

1.1. HDA Functional Architecture

In summary, the main objectives of the Lunar Lander

(LL) HDA system functions are to detect several types

of hazards from the lunar terrain (by using images and

elevation data -DEM- obtained respectively from the

Camera and LIDAR sensors) and to select a landing

zone that fulfils the mission needs in both safety aspects

and mission performance (e.g. the landing site must be

reachable within the manoeuvrability constraints of the

spacecraft). The new landing site (LS) will be provided

to the LL GNC system through a retargeting command,

when appropriate.

In accordance to this description, the HDA can be

divided in the following main functions, whose

functionality is graphically depicted in Fig. 1:

Equipment

Functional Block

I/O from non

HDA

I/O from HDA

GNC

PIL.1 HM PIL.2

LIDAR

Camera

Selected LS position

Retargeting Flag
Navigation Estimates

LIDAR Image

Image

Attainable Retargeting Map

Hazard Map

ROI

Ground

Coords

ROI

Ground Coords

Figure 1: HDA Functional Architecture

- PIL.1 – Attainable Region: This function is

responsible for determining the area of the terrain

that can be reached by the lander (ROI), and

associate a reachability score to each LS available

inside this area (Attainable Retargeting Map).

- HM – Hazard Mapping: Hazard mapping is the

process of assigning a hazard score to each LS

visible in the sensors’ FoV which measures how

risky it is for landing. Hazards are computed within

the region of interest built by PIL.1 around the

candidate landing site.

- PIL.2 – Decision Making: This function is

responsible for the retargeting decision process.

Taking as inputs the reachability and hazard level

assessments done respectively by PIL.1 and HM, a

decision is made on the best LS, which is provided

to the G(N)C system if a retargeting is decided.

1.2. HW-SW Co-design Process

The HW-SW co-design process consists in the

allocation to HW or SW of the different functions

implemented by the HDA system. As explained in

section 1, several factors affect to such decision:

- Functions that directly use data from the sensors are

initially allocated to the FPGA, since the sensor

data is received there through the system external

interfaces. Thus, it has been considered that

performing the entire sensor data processing in the

FPGA would define a less complex architecture.

- Functions with potentially high processing demand

and high parallelization possibilities are allocated to

the FPGA. This is typically the case for the IP

functions, whose processing can be pipelined by

windows, rows, chunks or even pixels.

- Dependencies between functions allocated in

different units (i.e. processor and FPGA) should be

reduced to avoid communication problems between

modules and delays. Two functions strongly

coupled are recommended to be implemented

together in order to reduce the communication

overhead, simplifying also the architecture.

- Complex functions containing decision trees with

large number of paths are recommended for their

implementation in the processor, as implementing

complex decision making into an FPGA can be

cumbersome and not efficient (the FPGA

implementation of determined algorithms show

none or small improvement in comparison with a

more traditional software implementation).

- The use of complex mathematical or trigonometric

functions is discouraged in the FPGA, even more as

the selected FPGA has a limited number of specific

resources as those rapidly consumed by the

implementation of these functions (e.g. MAC units).

Furthermore, the need of programming in a

technology-independent VHDL code prevents using

some of the most advanced characteristics provided

by the selected FPGA and the privative technology-

specific implementation of these functions. Also in

this category, it is necessary to consider carefully

the precision and ranges of the data used and the

produced results. The need of implementing Fixed

Point solutions into the FPGA can limit the

precision of the results obtained, which is

particularly important in some type of high-

precision algorithms.

The final HW/SW allocation is shown in Fig.2. The

functions allocated in FPGA are:

- Sensor data reception and pre-processing:

Reception and pre-processing of all sensor data

(LIDAR and NAVCAM) is performed in the

FPGA.

- Hazard Mapping: includes Matching, Shadow

Mapping, Slope Mapping, Roughness Mapping and

Sensor data Fusion functions. These modules are

fully embedded into the FPGA, given their

intensive use of the images (from camera and

LIDAR) and associated high computational cost of

the mapping and fusion functions, together with

their highly parallelizable characteristics.

The functions selected to be executed on the PPC are:

- Distance Cost Map (DCM): this function was

initially selected to be implemented in FPGA

following the process described above. However,

the deep analysis of the function recommended not

implementing the algorithm in the FPGA, especially

given the type of mathematical operations used. The

main reasons to not implement this algorithm in the

FPGA are summarized in the following bullets:

-Some computations do not seem feasible to be

implemented in fixed-point format.

-The module requires a large amount of

multiplications to be performed in sequence. For

every multiplication there is a loss of accuracy due

to truncation. Solutions to reduce the loss of

accuracy, such as normalization or using multiple

precision arithmetic, are very expensive in terms of

resources and cannot be alleviated without strongly

penalizing performance, since these operations are

in the core of the pipeline processing.

-Some parts of the module require random

addressing, this kind of access to memory typically

reduces performance by more than one order of

magnitude, destroying all the performance benefits

that could be achieved in a FPGA with respect to a

microprocessor.

-The DCM function requires several divisions,

square roots and a “tanh” operation, which cannot

be efficiently implemented in a FPGA. To avoid

performance bottlenecks, they should be

implemented in pipeline mode, thus consuming a

large amount of resources. Taking into account

these considerations, it is quite possible that the

FPGA resources would run out.

- PIL1: includes Guidance Cost Map and Attainable

Retargeting Map computations. PIL1 manages large

amount of data, receives several maps and merges

these maps in a final map. The analysis of this

algorithm shows that its design does not allow a

pipelined processing, as it produces the maps above

in a fully serial approach, merging the results at the

end of the processing and consuming a large

amount of resources. In addition, the algorithm

implements a series of high precision computations,

depending on complex mathematical formulae. In

case of need to implement this algorithm in FPGA,

it should be analysed and re-engineered in detail in

order to adapt it to a HW implementation.

NOTE: It must be remarked that the FPGA cannot

store large amounts of data. Therefore, it is assumed

that input arrays are uploaded in serial mode and

processed in pipeline mode as they arrive.

Similarly, output arrays are downloaded in serial

mode just as they are produced. Buffering may be

used to synchronize pipeline stages and avoid

pipeline stalls.

Equipment

I/O from non

HDA

LIDAR

Camera

GNC

Shadow

Mapping

Slope

Mapping
Fusion

Shadow Map

Slope

Map

Roughness

Map

Image

Image +

XY Coords

DEM + XY Coords

DEM + XY Coords

Matching

Distance Cost

Map

Guidance Cost

Map Attainable

Retargeting

Map

Guid

Cost

Map

Ground Coords

Functional Block

implemented on

the processor

Functional Block

implemented on

the FPGA

Risk Map

Global Map

Decision

Making

GNC

GlobalMap

Selected LS position

Retargeting Flag

RiskMap

Navigation Estimates

Roughness

Mapping

Hazard Map

ROI

AttRetMap

DistCostMap

HM

PIL.1

PIL.2

Figure 2: HDA Hardware Allocation

- PIL2: includes generation of Risk Map, Global

Map and Decision Making. Same justification than

PIL1. In addition, the nature of this algorithm as it

is implemented at present shows that a pipelined

approach is not possible. Further analysis shows

also that the PIL2 algorithms will need to be

adapted and improved in future phases, which

discourages as well the FPGA implementation due

to efficiency reasons.

The next step was to define the sequence of activities to

perform between the functions allocated in the FPGA

and the functions allocated in the PPC in order to obtain

the Landing Site and the Retarget Flag, starting since

the reception of the Navigation Data and the outputs of

the external Guidance and Control element (GC). The

sequence of activities, displayed in Fig. 3, shows the

nominal execution once the HDA has been initialized

and configured. The list of activities listed below are

composed mainly by the execution of the algorithms

that compose the HDA (see Fig.2) but also activities

related to the data handling and interface management:

1.Receive, Store and Forward to GC the Navigation

Data: Reception on PPC of the simulated system

Navigation Data at 10Hz and forward to G&C.

2.Receive and Store GC Data: GC control data is

received and the HDA_Mode is evaluated to decide if

the initiation of HDA algorithm has to be performed.

3.RMAP Commands Preparation: The commands to

request the acquisition of LIDAR and Camera data are

prepared in the PPC and sent to FPGA.

4.Send RMAP Commands: The FPGA sends through

dedicated SpaceWire buses the RMAP commands to

request the LIDAR and Camera data.

5.Receive and Store Data: The FPGA waits until the end

of reception through the SpaceWire buses of the DEM

and Image messages (from LIDAR and NAVCAM

models respectively) and stores the data in the board’s

memory, to be used in the PPC side.

6.HDA HW: LIDAR Preprocessing: Convert the

LIDAR DEM to Landing Site Frame.

7.HDA SW: Calculate PPC Part. 1: Preprocessing of

Navigation data and calculation of the Distance Cost

Maps (DCM), which are provided to the FPGA.

8.HDA HW: Calculate Hazard Maps, by using the DCM

and the Camera / LIDAR images.

9.HDA SW: Calculate PPC Part. 2: Calculation of the

PIL1 (except DCM) in parallel with the calculation on

the FPGA (HDA_HW) of the Hazard Maps.

10.HDA SW: Calculate PPC Part. 2: Calculation of

PIL2 functions.

11.Send LS: the last step is to send the results of the

HDA to the GC, through a dedicated SpaceWire bus.

Figure 3: HDA sequence of activities

2. HW IMPLEMENTATION

The HDA Breadboard Hardware architecture and

components are presented in Fig.4 including the

aforementioned Power PC processor, FPGA and

External/Internal interfaces.

The FPGA component is provided through a Gaisler GR

development board, equipped with a Xilinx Virtex 4

FPGA and an external SDRAM memory with up to 256

MBytes. This board is connected to the Power PC

computer (an ESD development component,

representative of the final MAXWELL space qualified

processor selected for the final system implementation)

through a cPCI interface. SpaceWire physical

connectivity is provided directly to the FPGA for

reception of the external sensor data (an independent

bus for each sensor, which are simulated by dedicated

camera and LIDAR models processing image data

obtained from PANGU simulator) and to the Power PC

system for interfacing to the Lunar Lander GNC.

Fig.4 shows as well the components (both new

developments and COTS) included in the FPGA System

on Chip (SoC), and communicated through an internal

AMBA bus. These components include:

- The SpaceWire Controller module, implementing

the logic for proper access to the SpW IP cores.

Figure 4: HDA HW System High-Level Architecture

- The IMAGE and LIDAR DMA components in

charge of decoding and unpacking the

IMAGE/LIDAR DEM, which will be transferred to

the Power PC processor through an ad-hoc memory

buffer (accessed through cPCI), for PIL processing.

- The Memory Controller and cPCI core manage the

interfaces with the RAM memory and cPCI bus.

- The HDA IP core, main development of the project,

which implements the HDA functions assigned to

Hardware, as described in the previous sections.

The HDA IP Core is connected to the AMBA bus

through an HDA IF Adapter module, whose main

purpose is to keep the HDA IP Core interface

independent of the rest of components and how they are

connected (thus, the HDA IP Core is kept portable to

other platforms or SoC architectures). The HDA IP core

reads the Navigation, IMAGE and LIDAR DEM from

the External memory and performs sensor data

matching. Afterwards, in parallel, the Hazard Maps are

computed. This parallelisation is further increased by

the use of processing pipelines in the FPGA, which

calculate sections of the maps from the initial images

received. The outputs of the different mapping

processing are aligned and fed to the Map Fusion

component, whose result is finally transferred to the

PPC for PIL.2 processing. Intermediate results of the

processing chain are stored on memory when needed.

HDA IP Core Control and Status registers are made

visible to the PPC, which controls the entire co-

processing unit in accordance to the algorithm steps.

Thus, HDA_HW_IP is completely managed by the PPC

through the cPCI interface. HDA_HW_IP could also

read and write image data to the External RAM.

Communication between the elements inside the FPGA

is performed through the use of an AMBA bus

compliant with AMBA Bus 2.0 specification, and its

AHB and APB buses for data transfer and core control.

3. VALIDATION OF HW IMPLEMENTATION

AND RESULTS

The original HDA model has been used as part of the

system specification along design phase, together with

the HDA closed-loop simulator existing from previous

phases. These facilities have been used as well for the

validation of the Breadboarding implementation, from

unit testing level of the HW and SW modules to the

final validation of the system, through the generation of

test vectors and golden data results in front of which the

system results have been compared. Furthermore,

Monte Carlo campaigns of the entire system have been

performed in the Simulator in order to validate all

specific parts of the code that changed from the

algorithmic point of view with respect to the original

solution, to accommodate these specific algorithms to

alternative numeric algorithms better suited for FPGA

implementation. The new alternative algorithms were

implemented in MATLAB/Simulink or C code,

introduced in the simulator and validated in MC

campaigns before go-ahead for VHDL implementation.

Validation of the HW implementation is mainly focused

on the HDA_HW_IP Core. The validation phase

considers the following main objectives:

- Validate the compliance of the HDA_HW_IP

design with the original HDA model

implementation.

- Measure the accuracy of the results of the

HDA_HW_IP with respect to the original HDA

model.

- Measure the performance of the HDA_HW_IP

design.

The validation phase included the following tasks,

developed in sequence:

- Basic submodule validation: Submodules are tested

and debugged before integration in the IP Core.

- HDA_HW_IP Unitary Function Tests.

- HDA_HW_IP Integration Tests.

- FPGA validation: HDA_HW_IP Design validation

in the real hardware.

Following a top-down hardware design methodology,

the design is thoroughly validated by functional

simulation before going into the FPGA implementation.

Simulation results are compared to the original HDA

MATLAB/Simulink/C implementation.

Simulation Tests

Simulation is the basic mechanism for unitary tests. It is

also used for HDA Integration tests when required.

Simulation tests use input data from the HDA baseline

implementation and automatically compare results with

the original HDA model implementation.

Figure 5: Example of HDA HW output: Variable

HAZARD_MAP (far range)

Hardware Tests

Hardware tests are performed upon integration of the

HDA IP Core in the FPGA. Hardware tests generally

consist on repeating the simulation tests on board.

Specifically, hardware tests are required to validate the

external FPGA interfaces and to accelerate the

execution of large sets of test cases. Fig.5 and Fig.6

show an example of the outputs that HDA HW sends to

HDA SW: the variable HAZARD MAP in close range,

represented as a map that reflects the overall hazard

level of the candidate landing sites. The image in top-

left shows the expected results, the image in the top-

right shows the results obtained in HW, and the image

on the bottom shows the difference between them. The

analysis of the results showed that the errors were

negligible or located near areas of already identified

Hazard (thus, far from the safe landing sites).

Figure 6: Example of HDA HW output: Variable

HAZARD_MAP (close range)

Worst-case error statistics are extracted from the

analysis performed, to quantify the effect of the FPGA

fixed-point implementation (and other errors) in the

overall HDA implementation (i.e. with conversions

from doubles to fixed point in the inputs/outputs). These

error statistics are then used in the general HDA testing

campaigns, performed through Monte Carlo

simulations, ensuring that 99% LS decisions are correct.

4. SW IMPLEMENTATION

The class diagram shown in Fig.7 represents the High

Level Architectural Design for the HDA SW

component, allocated to the system Power PC processor

and run on top of the VxWorks operating system. This

component is in charge of performing the HDA SW

activities, both related to performing and controlling the

HDA algorithms and to the additional functions

necessary to communicate with the Lunar Lander GNC

computer or the Navigation data provider, and providing

debug or control data. Three main groups of modules or

layers are shown:

- HDA Layer Service: The module is in charge of

managing the external communications of the

system, managing the hardware drivers and

independent to the rest of the Software functions

from the underlying interface hardware. This layer

is composed by sporadic tasks that waits the

reception of the inputs data from the Navigation

simulator and from the Guidance and Control

- HDA Application: The module is in charge of

controlling the HDA execution and managing the

application data necessary to produce a landing site

retargeting, estimated navigation data and the data

sets exchanged between the HDA SW and HW.

This layer is in charge of managing the system data

flow and controlling the execution of the HDA

algorithms. It waits the reception of the simulated

Navigation data and G(N)C data and analyses them

in order to command the HDA process execution;

First, it obtains feedback information from the

G(N)C and Navigation, then it checks if the data

indicates that shall be calculated the Landing Site.

Once the HDA has been started, this layer is in

charge of commanding the execution of the HDA

SW, sending the results of the HDA SW to the

FPGA through the PCI and commanding the HW to

start the processing. When the HDA HW finalizes

the processing of the data, the HDA Application

will command the retrieval of the data results,

providing them to the HDA SW to continue its

activities and confirm the landing site or calculate a

new possible, which will be sent to the G(N)C

through the SpaceWire interface.

- HDA SW: The module that performs the Hazard

Detection and Avoidance algorithms and drives the

execution of the component, or application

Software Component (SWC). These functions

derive from the HW/SW co-design, where the HDA

functions were partitioned into HW and SW.

The HDA SW activities are assigned to independent

tasks depending on the Software design, frequency

requirements and concurrency needs.

Figure 7: HDA HW System High-Level Architecture

The scheduling analysis of the system has provided the

inputs necessary to perform this assignment, with the

main objective of meeting the real time requirements of

the system such as the HDA execution time deadlines.

Synchronization mechanisms are used as well when

necessary to assure the integrity of the data sets, which

can be compromised by the simultaneous access of

more than one task.

The synchronization between the FPGA and the PPC

has been kept as simple as possible, prioritising

asynchronous signalling over clock-based

synchronization.

5. SYSTEM VALIDATION AND RESULTS

The HDA validation approach is based in the injection

in open loop of pre-recorded inputs (previously

generated in the HDA functional simulator or FES) for

different test cases / reference trajectories, studied to

cover the different situations that can be faced by the

system: since the simple trajectory with no retargeting

needs, to more complex test cases where several new LS

are selected. For the final validation steps, three

reference scenarios were selected (Nominal spacecraft

mass, Maximum mass and Minimum mass). In these

scenarios the HDA is executed in two different phases:

- Far range phase: Far range zone with ranges

between 2500m and 1500m. The LIDAR model is

parameterized for far range conditions, i.e. ground

resolution of 2.5m.

- Close range phase: Close range zone with ranges

between 300m and 150m. The LIDAR model is

parameterized for close range conditions, i.e.

ground resolution of 0.25m.

The process of HDA validation is split for three sets of

test campaigns:

- Unitary tests of the HDA: Performed to ensure that

BB implementation of the HDA units (HW and

SW) is correct, and later to check if integration into

complete BB environment is correct. Reference data

generated for unitary and integration tests are the

same, with the difference that during (step-wise)

integration tests the inputs are generated in BB

environment. Although HDA is previously

validated in functional engineering simulator using

NAV performance model (Astrium), the approach

for unitary/integration tests is done using ideal

navigation inputs (as it simplifies the analysis

process of internal HDA algorithms).

- Integration test for the HDA-HW and HDA-SW:

Performed to ensure that HDA BB implementation

of the HDA HW and HDA SW is correct.

- Integration tests of the HDA/G(N)C: Performed to

ensure that the whole BB HDA implementation is

correctly integrated in BB environment. Reference

data is generated on functional engineering

simulator using NAV performance model (Astrium)

and implementing sensor delays

The outputs produced by the entire HDA system are

compared with the outputs produced by the HDA

functional / reference model in order to perform the

following validations:

- Real time functional performance validation: This

validation is based on comparison of the results

generated by the HW/SW functional design model

respect the Hardware/Software implementation

results, in an open loop testing approach. The

“functional performance” is measured by

comparing the results of the HDA (mainly the

newly selected landing sites) and evaluating the

differences obtained. Fig.8 shows an example of

correct HDA decisions (safe and with 2.7 footprint

margin) over a map with safe and unsafe zones.

- Resource performance validation: The performance

of the HDA system in real time and resources

aspects is measured by the computation of several

budget figures (different in Hardware and

Software), which include the Worst case execution

time (WCET) of the composed HW/SW system, for

the Nominal and Worst-case reference test cases

defined. This WCET includes the complete

processing since the start of the HDA cycle until the

production of a final result (and passing through the

sensor commanding and sensor data acquisition and

processing, the computation of the hazard maps, the

piloting functions, etc.). The total HDA execution

times including all the activities defined in Fig.3 are

shown in Tab. 1 below, in seconds.

Table 1: HDA Timing

Test Case Far (sec) Close (sec)

Nominal spacecraft mass 7,4828 9,6368

Maximum spacecraft mass 7,481 8,973

Minimum spacecraft mass 7,4826 9,4816

The same approach has been followed to validate the

unitary implementation of the HW and SW modules, as

well as the integration of the independent parts.

Figure 8: Example of HDA final decision

6. CONCLUSIONS

The precise analysis and later implementation in

hardware of specific parts of the functional Lunar lander

HDA algorithms has allowed a significant reduction of

the system execution time, while keeping results

accuracy. The total WCET of the HDA is around two

seconds in the entire execution of the HDA HW which

is a dramatic improvement from the results of the

execution of the same algorithms in SW. However,

along the development of the project it was also

demonstrated that not all the SW is adequate for HW

implementation, due to feasibility, efficiency or

complexity reasons which had to be analyzed with care.

The implementation of the HDA algorithms in a

HW/SW co-designed approach, using the system model

as executable specification and validation platform, has

proved as a successful solution from the point of view

of both, performance and functional results.

Finally the BB activity has increased the TRL level of

the HDA subsystem to TRL 4, or TRL 4/5 for the

integrated G(N)C+HDA subsystems correctly operating

together in a HW and navigation simulated environment

(i.e.: simulated image / DEM generation, obtained

through PANGU tool and camera/LIDAR models).

As final conclusion HW/SW co-design and partitioned

implementation has been demonstrated to be a good

solution for certain systems which involves the use of

heavy processing algorithms related to solving complex

algorithmic problems in real-time conditions, but it is

important remark that this process demands a complex

and costly effort, which should not be underestimated.

ACKNOWLEDGEMENTS

This work has been partially funded by ESA, contract

number 4000101533 LUNAR LANDER - PHASE B1,

and by the Spanish CDTI as part of the PERIGEO

project, file number IPT-20111022.

REFERENCES

1. Parreira, B., Vasconcelos, J.M., Montaño, J., Peñin,

L.F., Hazard Detection and Avoidance in ESA

Lunar Lander: Concept and Performance. In

proceedings of the AIAA GNC 2013 Conference.

2. E. Kervendal, G. Flandin, K. Kanani, J. Morand, B.

Parreira, A. Caramagno, J.C. Bastante, J. Quirce, J.

Dinis, P.Motrena, J. Rebordao, C. Philippe, Vision-

Based Hazard Detection and Avoidance for

Martian and Lunar Landing: the HASE study for

ESA. In proceedings of the GNC 2011 Conference.

