

AN INTEGRATED SVF FOR REAL-TIME CLOSED-LOOP HIGH-

COMPLEXITY SYSTEM SIMULATIONS

Juan Pérez
1
, José A. Pulido

1
, Pedro Palomo

1
, Antonio Latorre

1
, João S. Silva

2
, Hugo D. Lopes

2

and Alberto García
3

1
Deimos Space, Ronda de Poniente 19, 28760 Tres Cantos, Spain. Phone/Fax (+34) 91 806 34 50/51.

2
Deimos Engenharia, Av. D. João II, Lote 1.17.01 - 10º, 1998-023 Lisboa, Portugal. Phone (+351) 21893 3010.

3
ESA-ESTEC, Keplerlaan 1,2201 AZ Noordwijk, the Netherlands. Phone (+31) 71 565 4886.

1
{juan.perez, jose-antonio.pulido, pedro.palomo, antonio.latorre}@deimos-space.com

2
{joao.silva, hugo.lopes}@deimos.com.pt

3
Alberto.Garcia@esa.int

ABSTRACT

This paper presents an integrated Software Validation

Facility where the application software target of the test

runs on a flight processor representative emulator while

its environment is executed on MATLAB/Simulink,

being both parts executed as different processes on a

single PC. In this way, SW developers have available a

compact but complete facility, where they are able to

accurately analyze and profile the SW in order to have a

representative idea of its performance when running on

real HW, while taking profit of having an easy access to

tune and get valid data from the simulated resources,

such as HW registers, sensor measurements or any other

data available in the real system.

1. INTRODUCTION

Closed-loop testing is one of the most important means

of testing SW components. Any closed-loop simulation

is composed by a Software Under Test (SWUT) and a

simulated environment which interfaces with it, taking

the signals output from the simulation environment and

using them as input for the SWUT. Then, the SWUT

performs its job, generating a set of outputs. In contrast

to open-loop testing, where the strategy is restricted to

the analysis of outputs when excited by controlled

inputs, in closed-loop testing the set of outputs

generated by the SWUT is then fed back into the

environment simulation, thereby affecting it under

actual service conditions and modifying the subsequent

inputs to the SWUT.

Closed loop testing not only checks the behaviour of the

particular SWUT, but also tests the reaction of the full

system to the SWUT operation. This provides for a

realistic platform for testing the environment, the

SWUT and the interaction between both of them.

This type of testing simulates most closely the actual

performance of the whole system. However, the

requirements for this kind of testing platforms may also

be complex, as it can require the exchange of a large

amount of data and signals and the environment must

also mimic the real physical system and provide the full

response during closed-loop testing. Depending on the

type of system under test, the expected fidelity of the

simulation and the sensitivity of the SWUT to the fine

grain parameters of this system, the environment

simulation may require to perfectly emulate complex

physical or behavioural processes, which are often

difficult to model without the use of advanced

simulation tools such as MATLAB/Simulink®.

Moreover, a Software Validation Facility (SVF) for

real-time closed-loop simulations must offer to the

SWUT simulated real-time performance, together with

synchronization means to ensure a fully correct timing

relation between the SWUT and its environment.

This paper presents a SVF where both, the SWUT and

its environment are executed as different applications in

the same PC that communicate through a shared

memory interface, allowing fast data transfers and the

use of synchronization elements. The synchronization

between the environment simulation and the SWUT and

the simulated time coherence between them (tackled in

section 2.4) are achieved implementing protocols that

establish the order of execution and data flow between

the elements and adjust the execution times of the “real-

time friendly” processor emulator to the less flexible

time reference of the environment simulation,

implemented in Simulink.

The SVF described in this paper has been successfully

used in the development of the GNSS Dynamics

Simulator and AGGA-4 Test and Simulation Tool

(GSTST) project, where the main objective was to

develop a tool to design, analyse and test GNSS

algorithms for AGGA-4-based GNSS receivers[1][2].

2. INTEGRATED SVF ARCHITECTURE

Simulink has become in one of the most relevant

environments for multidomain simulation and Model-

Based Design. It is integrated with MATLAB, enabling

you to incorporate algorithms into models and export

simulation results for further analysis.

Given the penetration of this development environment

in the engineering industry, nowadays it is probably the

main alternative for development of closed-loop

simulations, involving the modelling of the environment

in Simulink and its translation into code through an

autocoding process (the code is then executed for

instance in dedicated platforms such as dSpace®).

However, sometimes the autocoding process is not

feasible or convenient (e.g. if frequent model

modifications are necessary). It is on these cases, and

especially for the simulation of hybrid HW/SW systems,

where the present paper is focused, as our purpose is to

build a SVF where the environment is executed directly

in Simulink and not translated to code.

Regarding the SWUT, space processor market for ESA

missions is currently dominated by the LEON family,

and these are also the processors used in ESA’s AGGA

product line (in which this SVF is firstly used), so the

SVF has been designed with this idea on mind. The

architecture and tools employed should be used straight

forward with the LEON2-FT processor or equivalent

emulator and easily extended to other LEON processors.

2.1 Design Alternatives

With these premises, two possible approaches for the

SVF architecture were analysed (Fig. 1):

A. SWUT running on a LEON2-FT processor

(requiring the development of an interface to

support the communication between the Simulink

model and the HW);

B. SWUT running on a LEON2 processor emulator

(on the same PC as the Simulink model, precluding

the need for the implementation of a complex

interface with the HW emulation and without

synchronization limitations).

In option A, the interface to be developed in order to

ensure the communication between Simulink and the

LEON processor must have a physical layer and a SW

layer (part of which would be included in the Simulink

part while the rest would run on the LEON processor).

Measurements sent to the SWUT and feedback signals

generated by it are exchanged through this interface.

In option B, the SWUT runs on a LEON-2 emulator

(e.g. TSIM [5]), using a software-only interface.

Communication between the Environment and the

SWUT would be assured through shared memory.

2.2 Trade-off and Selection

Both options have advantages and disadvantages, as

enumerated below. The main advantage of option A is

representativeness, as the SWUT runs directly on the

LEON processor, which is the final target environment.

Nevertheless, it is also worth noting some drawback

about portability, besides the need to have an external

board (the Development Board) connected to the

Simulation PC, which makes this solution less portable.

On the other hand, the advantages of Option B (SWUT

running on a LEON processor emulator) are the

following:

- Portability: It would result in a software only

solution, which means that additional hardware is

not required and that the portability of the SVF is

greatly increased;

- Flexibility: It offers a high level of flexibility,

allowing the use of user-defined I/O interfaces, the

possibility of linking the emulator with other user

applications and the capability of tuning the

emulator characteristics as needed.

Figure 1: SVF design alternatives

However, this approach also has some disadvantages,

namely:

- Realism: The use on an emulator instead of the real

target has some limitations in terms of simulation

representativeness, as some features may not be

fully realistic. In the case of TSIM, the accuracy

and generation of IEEE exceptions is host

dependent and not always identical to the actual

ERC32/LEON hardware. Still, the average timing

accuracy of integer instructions is better than 0.5%

and floating-point instructions have a typical

accuracy of 2%. Nevertheless, these limitations may

not be relevant for most of the software

development phases, as it is still possible to test the

algorithm performance and to estimate rather

accurately the real-time behaviour of the

development;

- Speed: Depending on the host PC and on the

selected LEON’s clock frequency, the simulation

rate of the emulator may be slower than real-time.

However, since an important part of the impact on

simulation speed is expected to be on the Simulink

side of the SVF, this is not expected to be an

important limitation.

An important issue regarding option B is the selection

of the LEON emulator tool, which has been also

identified as one of the main cost drivers. Three

alternatives have been considered: TSIM (the most

popular LEON emulator, but expensive), the Terma

Emulator Suite [3] and the QERx emulator [4].

A trade-off has been made and it was concluded that the

TSIM alternatives, although eventually eligible in the

future, were not guaranteed to be a timely option to

Deimos due to validation and legal issues affecting the

Terma Emulator Suite and QERx respectively, so the

TSIM emulator was selected for use in the SVF.

The final cost of options A and B may be different for

each company depending on existing and reusable

elements. Assuming a project starting from scratch,

where none of the required software and hardware is

available to a potential user, both options are similar

because the difference between the cost of TSIM

(option B) and a development board plus the GRMON

software (option A) is almost negligible.

Table 1 summarizes the trade-off between both options.

Table 1: Trade-off between design alternatives
 LEON Board

(Option A)

LEON Emulator

(Option B)

Complexity HIGH HIGH

Portability MEDIUM HIGH

Flexibility LOW HIGH

Realism HIGH MEDIUM/HIGH

Therefore, taking into account the advantages and

disadvantages presented above, the selected approach is

option B, which also seems to be the most interesting

for ESA (in the context in which the tool was developed

and its adoption for future projects and missions) and

for other potential users of such a tool.

2.3 Environment-SWUT Data Interface

The interface between the SWUT and the environment

is designed with three main objectives, namely, to:

- Establish a synchronization scheme for the flow of

information and processing, in order to obtain a

time-true emulation.

- Allow the communication between both sub-

systems, defining an accurate exchange of

information using the available low-level features

of the host operating system.

- Minimize the modifications to the SWUT required

to port it to a Hardware-in-the-loop or real platform,

making the interface with the simulated

environment as representative as possible.

The layered architecture of the interface is displayed on

Fig.2. On the simulated environment side, a

MATLAB/Simulink environment holds the top level

system, which runs each module at the required

frequency. On the other side, a SWUT Test-Bed

supports the execution of the user-developed algorithms

(the SWUT) and implements also an interface, in charge

of enabling the communication between both modules

and providing an abstraction layer between them.

The connection with the SWUT Test-Bed interface is

implemented in Simulink by using one or more S-

Function blocks developed in C language with access to

the underlying host operating system (for using disk

files or communication devices). The inputs and outputs

of the S-Function blocks are implemented as MATLAB

Bus objects, which explicitly define each signal type

and size. These Bus objects translate directly into C

structures and therefore allow the definition of a single

interface for the SWUT Data Interface.

On the SWUT Test-Bed side, the application is run on

top of an embedded operating system designed for the

LEON2 processor (RTEMS) and uses the TSIM I/O

modules to access the host operating system features.

A shared memory object is employed to establish

communication between both sides. Due to the modular

design of the interface, a common static library has been

implemented to provide an abstraction of the host

operating system layer and allowing the portability of

the platform. The interface of the static library is

composed of simple operations to read/write the shared

memory and to send/receive signals for synchronization.

The process of sending data from the environment to the

SWUT Test-Bed to be used internally is as follows:

- The data obtained in the Environment is directed to

the S-Function that implements the interface with

the SWUT Test-Bed.

- The interface formats and packages the data to be

sent, and delivers it using the host operating system

facilities. After the information has been sent, it

waits until the reception of a confirmation signal

from the SWUT Test-Bed.

- The SWUT Test-Bed receives the data and delivers

it to the SWUT algorithms for its processing. When

the process is complete, a signal is sent to the

Environment to finish this processing cycle.

Figure 2: Environment-SWUT data interface

2.4 Environment-SWUT Time Synchronization

Temporal synchronization between the Environment

Simulator and the SWUT is required, because they are

run as independent processes using different references.

The Environment Simulator runs on Simulink (no real-

time at all, just simulation steps), resulting in executions

that could be longer or shorter than the period defined

for the different system tasks.

The SWUT is run on a simulated real-time platform

(with a real-time operating system and simulated HW,

including the clocks and the operation count), which in

turn, is running in the context of a Host Operating

System (Windows). In other words, while the SWUT is

run on simulated real-time (thanks to TSIM features),

the user may experiment inconsistent execution global

performance depending on several factors such as the

simulator performance, the Host PC HW or the number

of external processes running on Windows which

interrupt the execution of the simulator.

Moreover, some other characteristics of the system must

be taken into account:

- The Environment Simulator may have different

MATLAB/Simulink modules running at different

frequencies, each of them generating data that will

be made available to the SWUT.

- The Environment Simulator may receive data from

the SWUT at different frequencies to be used by

different modules.

- Neither SWUT frequencies nor sequence of

operation are known in advance. The SWUT shall

be able to be configured to receive data at different

frequencies.

In our implementation, the SWUT Test-Bed is in charge

of the synchronization with the Environment Simulator.

Two different patterns can be developed:

- Full Synchronized Pattern: the SWUT is executed

when a synchronization signal is received from the

Environment Simulator, after finalization of a

simulation step. While the SWUT is executed, the

Environment Simulator is blocked until the SWUT

execution minimum period has finished and vice

versa. There is no concurrence between the two

sides of the simulation. This pattern is appropriate

when both sides need the outputs of the other side.

- Semi-Synchronized Pattern: the SWUT is

composed of one or more tasks that execute with

different frequencies, in parallel to the execution of

the Environment Simulator. The mechanisms to

synchronize the execution of the SWUT with the

Environment simulator are the messages from the

Environment to the SWUT. When the Environment

simulator detects that the last message sent has been

taken by the SWUT, it continues its execution

without waiting for the execution of the SWUT.

This strategy allows parallelizing the execution of

the both sides, so it is appropriate when

Environment simulator does not need the outputs

produced by the SWUT.

In order to perform closed-loop simulations, we have

implemented the Full Synchronized Pattern, with the

time master in the LEON Simulator side. Therefore, the

Environment simulator executes a step when the

synchronization signal is received from the SWUT,

which remains blocked until new inputs are ready.

2.5 Execution Model

A first approach to the definition of the architecture was

made by defining a periodic task in the SWUT Test-Bed

that would run at the same frequency as the base step

time of the GNSS Simulator, but this was later

discarded for the following reasons:

- The synchronization task in the SWUT Test-Bed

has additional duties, as the processing of incoming

data from the GNSS Simulator to translate it into

the desired interface to be provided to the SWUT,

and the generation of monitoring data. These

operations may require a non-negligible processing

time, which should not be deducted from the CPU

time available for the SWUT execution.

- Isolating the execution time of the SWUT allows

realistic performance measurements, and can be

used to define a duty cycle according to the time

budget allocated to the SWUT in the final system.

The implemented architecture, which solves the

previous issues, can be summarized as follows:

- A Timer is implemented in the SWUT Test-Bed

with the same frequency as the highest frequency

task in the whole system (e.g. if there is a module in

the Environment simulator running at 1KHz, the

Timer shall have a duration of 1ms) .

- A Synchronization Task is implemented, that is

enabled when the Timer ends and interrupts the

execution of the SWUT, entering in Simulator

Mode using the IO modules functionality (in

Simulator Mode, the simulator pauses all the HW).

In this mode a SW Bus analyses the messages ready

to be sent to the Environment Simulator.

- The mechanism to send messages from side to side

is a memory mapped file, where each message has

space reserved and a status word which controls if

the message has been already read or not.

- In the Environment simulator side, the model waits

for new messages. When it is notified to run a new

cycle, the model reads the new messages, executes

the simulation step and writes all output messages

in the shared memory mapped file. Afterwards, the

Environment simulator waits to be signalled again

to execute the next simulation step.

- The SW Bus, in the LEON emulator side, analyses

the received messages and puts the data in the

positions to be read by the SWUT. The SW Bus

returns the control to Synchronization Task, which

arms the Timer again and goes to sleep, allowing

the SWUT to continue its execution.

Fig.3 shows a chronogram with an excerpt of the

execution of an application composed by:

- A GNSS Simulator (the Environment) working at a

maximum rate of 1 KHz.

- The SWUT with two application tasks, Task A at 1

KHz and Task B at 500 Hz.

2.6 Results Processing

The processing of outputs from the SWUT and other

monitoring data is performed on the MATLAB/

Simulink environment. The S-Functions that implement

the communication with the SWUT provide as their

outputs the SWUT output data as bus objects, which

include the required feedback outputs to perform a

closed loop simulation and to allow the comparison of

the SWUT outputs to reference data generated in the

Environment Simulator. Fig.4 shows an example of

SWUT output (velocity computed on a GNSS receiver

by the SWUT), compared with equivalent reference

data.

The monitoring data generated by the SWUT Test-Bed

is also available in the MATLAB environment. This

information allows the analysis of the performance

(fidelity, real time behaviour, errors) of the SWUT.

3. APPLICATION TO GNSS RECEIVERS

The SVF described in this paper has been successfully

used in the GNSS Dynamics Simulator and AGGA-4

Test and Simulation Tool (GSTST) project [1], where

the main objective was to develop a tool to design,

perform a realistic analysis and finally, test GNSS

signal processing and navigation algorithms for AGGA-

4-based GNSS receivers. AGGA-4 is the Advanced

GPS / Galileo ASIC developed by ESA for GNSS space

applications [2]. The GSTST tool provides a relatively

inexpensive solution (when compared to currently

available hardware-based solutions) for the simulation

of realistic GNSS observables and measurements (as the

software part of the receivers would see them) as well as

of the AGGA-4 programming registers, allowing

AGGA-4-targeted software to be tested without the

need for the AGGA-4 chip or complex and expensive

hardware setups. GNSS signal emulation is performed

in MATLAB/Simulink by the use of DEIMOS’

GRANADA GNSS Blockset (formely GRANADA

Factored Correlator Model Blockset) [6].

Figure 4: Example of SWUT output processing

The data exchanged between the GNSS Simulator and

the SWUT Test-Bed can be sub-divided into the

following categories:

- Hardware registers, which include 14 AGGA-4

programming registers, IE and ME observables (20

elements) per AGGA-4 channel (36 channels) and

interrupt signals.

- Shared GSTST variables, which include GNSS

measurements (more than 10 post-processed

observables), ephemeris, status flags and other

GSTST internal variables and outputs (including

user-definable outputs) per channel.

- Shared SWUT variables, which include SWUT

internal variables and outputs (including user-

definable outputs), configuration parameters,

control signals, and performance monitoring signals

(for SWUT profiling) per channel.

Fig.5 shows an schema of the SVF configuration, where

the different modules of the AGGA-4 are simulated on

the Simulink side and communicate with the SWUT

where the Tracking Loops algorithm and/or the

Navigation Filter are executed on top of the LEON-2

Processor Emulator.

Figure 5: Example of SVF Usage for GNSS algorithms

In the scope of this project, two SWUTs have been

developed to demonstrate the usage of the SVF in

different configurations:

- Navigation Orbital Filter, with low frequency

requirements and no parallelization. This SWUT

implements the API to handle the Measurement

Epoch signal generated in the GNSS Simulator with

a frequency of 10 Hz. The SWUT receives

measurement signals as well as satellite navigation

X ms X+1 ms

SW Bus

Synchronization Task

Task A

Task B

GNSS Simulator

SWUT Test-Bed is

blocked while GNSS

Simulator executes next

step

Timer ends,

Synchronization Task wakes up

1 ms

.

.

SWUT budget LEON

CPU time per step in

simulation

.

.

Timer started,

Synchronization Task sleeps

SWUT

Figure 3: Time synchronization and data exchange

data, and is capable of PVT generation in LEO and

GEO orbits, as well as computation of Doppler

aiding signals to be fed back to the simulated

tracking loops.

- Tracking Loop algorithms, with high frequency

requirements and multiple channels processing.

This SWUT has to attend different signals

(Integration Epoch and Long Epoch) for several

processing channels, which can be generated at a

frequency of up to 1 Khz. This is done by

implementing the APIs to handle both types of

signals. In this case the SWUT obtains the

correlator outputs and controls them by generating

the required feedback signals.

Thanks to the flexibility of the SVF the performance of

the SWUT can be analysed and refined. For example,

the Navigation Orbital Filter implemented has been

tested with different configurations in the Environment

Simulator describing different scenarios of satellite

constellations. Fig.6 displays the different performance

of the algorithm achieved in a scenario with GNSS

satellite outage.

The performance of the filter has also been analysed

regarding its execution time and by tweaking the

simulated system clock on the TSIM emulator,

obtaining the results displayed in Fig.7.

Figure 6: Performance Analysis – NOF application

Figure 7: Execution Time Analysis – NOF application

4. CONCLUSIONS

A Software Validation Facility has been presented to

support the development, analysis and test of a complex

hybrid system where the SW algorithms interact with

other parts of the system implemented in specific HW,

simulated in Simulink.

This tool provides a low-cost solution for a system

developer to execute closed-loop simulations in a

layered and realistic environment (including real-time

constraints and real reaction of the system to the SW

outputs), enabling the possibility of tackling an iterative

and incremental development process, with frequent

modifications of the SWUT and the environment,

including their boundaries (i.e. a SWUT composed by N

modules can be developed in an incremental approach

implementing and validating module by module,

simulating the other ones in Simulink, so what belongs

to the SWUT and to the Environment simulator is

different for every development stage).

This way, the SVF allows to perform a wide range of

tests (performance, accuracy, etc.) from early stages of

the development process without the need for complex

and costly HW setups.

The presented SVF has been successfully used in the

GSTST project, designed to support the validation of

navigation algorithms candidate to be used with real

AGGA-4-based receivers in future missions (e.g.

GRAS-MetOp 2 [7] and other GNSS receivers).

ACKNOWLEDGEMENTS

This work has been partially funded by ESA, contract

number 16831/03/NL/FF, GNSS Dynamics Simulator

and AGGA-4 Test and Simulation Tool (GSTST

project).

REFERENCES

1. Silva, J.S., Lopes, H.D., Peres,T.R., Vasconcelos,

J.M., Coimbra, M.M., Freire, P., Palomo, P., Pérez,

J., Pulido, J.A., García, A., Roselló, J. An Integrated

and Cost-Effective Simulation Tool for GNSS Space

Receiver Algorithms Development. In proceedings of

the ION GNSS 2013 Conference. 16-20 September

2013, Nashville, Tennessee (USA).

2. J. Rosello, P. Silvestrin, J. Heim, “AGGA-4: Core

Device for GNSS Space Receivers of This Decade”,

NAVITEC 2010, December 2010, ESTEC,

Noordwijk, The Netherlands.

3. Terma Space, “Terma Emulator Suite”, retrieved dec-

2013 from http://www.terma.com/media/152081/

emulator_suite.pdf

4. Pidgeon, A., Robison, P., McCellan, S., “QERx: A

High Performance Emulator for Software Validation

and Simulations”, DASIA 2009, Istambul, Turkey.

5. Aeroflex Gaisler, “TSIM ERC32/LEON System

Simulator” (Product Sheet), retrieved dec-2013 from

http://www.gaisler.com/doc/tsim_product_ sheet.pdf.

6. João S. Silva, et al., “The GRANADA Factored

Correlator Model Blockset: A Tool for Fast GNSS

Receiver Signal Processing Simulations”, NAVITEC

2008, ESTEC, Noordwijk, the Netherlands,

December, 2008.

7. Global Navigation Satellite System Receiver for

Atmospheric Sounding (GRAS), retrieved Jan-2014

from http://www.esa.int/Our_Activities/Observing_

the_Earth/The_Living_Planet_Programme/Meteorolo

gical_missions/MetOp/GRAS2.

