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ABSTRACT 

This paper presents an integrated Software Validation 

Facility where the application software target of the test 

runs on a flight processor representative emulator while 

its environment is executed on MATLAB/Simulink, 

being both parts executed as different processes on a 

single PC. In this way, SW developers have available a 

compact but complete facility, where they are able to 

accurately analyze and profile the SW in order to have a 

representative idea of its performance when running on 

real HW, while taking profit of having an easy access to 

tune and get valid data from the simulated resources, 

such as HW registers, sensor measurements or any other 

data available in the real system. 

1. INTRODUCTION 

Closed-loop testing is one of the most important means 

of testing SW components. Any closed-loop simulation 

is composed by a Software Under Test (SWUT) and a 

simulated environment which interfaces with it, taking 

the signals output from the simulation environment and 

using them as input for the SWUT. Then, the SWUT 

performs its job, generating a set of outputs. In contrast 

to open-loop testing, where the strategy is restricted to 

the analysis of outputs when excited by controlled 

inputs, in closed-loop testing the set of outputs 

generated by the SWUT is then fed back into the 

environment simulation, thereby affecting it under 

actual service conditions and modifying the subsequent 

inputs to the SWUT.  

Closed loop testing not only checks the behaviour of the 

particular SWUT, but also tests the reaction of the full 

system to the SWUT operation. This provides for a 

realistic platform for testing the environment, the 

SWUT and the interaction between both of them. 

This type of testing simulates most closely the actual 

performance of the whole system. However, the 

requirements for this kind of testing platforms may also 

be complex, as it can require the exchange of a large 

amount of data and signals and the environment must 

also mimic the real physical system and provide the full 

response during closed-loop testing. Depending on the 

type of system under test, the expected fidelity of the 

simulation and the sensitivity of the SWUT to the fine 

grain parameters of this system, the environment 

simulation may require to perfectly emulate complex 

physical or behavioural processes, which are often 

difficult to model without the use of advanced 

simulation tools such as MATLAB/Simulink®. 

Moreover, a Software Validation Facility (SVF) for 

real-time closed-loop simulations must offer to the 

SWUT simulated real-time performance, together with 

synchronization means to ensure a fully correct timing 

relation between the SWUT and its environment.  

This paper presents a SVF where both, the SWUT and 

its environment are executed as different applications in 

the same PC that communicate through a shared 

memory interface, allowing fast data transfers and the 

use of synchronization elements. The synchronization 

between the environment simulation and the SWUT and 

the simulated time coherence between them (tackled in 

section 2.4) are achieved implementing protocols that 

establish the order of execution and data flow between 

the elements and adjust the execution times of the “real-

time friendly” processor emulator to the less flexible 

time reference of the environment simulation, 

implemented in Simulink. 

The SVF described in this paper has been successfully 

used in the development of the GNSS Dynamics 

Simulator and AGGA-4 Test and Simulation Tool 

(GSTST) project, where the main objective was to 

develop a tool to design, analyse and test GNSS 

algorithms for AGGA-4-based GNSS receivers[1][2]. 

2. INTEGRATED SVF ARCHITECTURE 

Simulink has become in one of the most relevant 

environments for multidomain simulation and Model-

Based Design. It is integrated with MATLAB, enabling 

you to incorporate algorithms into models and export 

simulation results for further analysis.  

Given the penetration of this development environment 

in the engineering industry, nowadays it is probably the 

main alternative for development of closed-loop 

simulations, involving the modelling of the environment 

in Simulink and its translation into code through an 

autocoding process (the code is then executed for 

instance in dedicated platforms such as dSpace®). 

However, sometimes the autocoding process is not 



 

feasible or convenient (e.g. if frequent model 

modifications are necessary). It is on these cases, and 

especially for the simulation of hybrid HW/SW systems, 

where the present paper is focused, as our purpose is to 

build a SVF where the environment is executed directly 

in Simulink and not translated to code.  

Regarding the SWUT, space processor market for ESA 

missions is currently dominated by the LEON family, 

and these are also the processors used in ESA’s AGGA 

product line (in which this SVF is firstly used), so the 

SVF has been designed with this idea on mind. The 

architecture and tools employed should be used straight 

forward with the LEON2-FT processor or equivalent 

emulator and easily extended to other LEON processors. 

2.1 Design Alternatives 

With these premises, two possible approaches for the 

SVF architecture were analysed (Fig. 1): 

A. SWUT running on a LEON2-FT processor 

(requiring the development of an interface to 

support the communication between the Simulink 

model and the HW); 

B. SWUT running on a LEON2 processor emulator 

(on the same PC as the Simulink model, precluding 

the need for the implementation of a complex 

interface with the HW emulation and without 

synchronization limitations). 

In option A, the interface to be developed in order to 

ensure the communication between Simulink and the 

LEON processor must have a physical layer and a SW 

layer (part of which would be included in the Simulink 

part while the rest would run on the LEON processor). 

Measurements sent to the SWUT and feedback signals 

generated by it are exchanged through this interface. 

In option B, the SWUT runs on a LEON-2 emulator 

(e.g. TSIM [5]), using a software-only interface. 

Communication between the Environment and the 

SWUT would be assured through shared memory. 

2.2 Trade-off and Selection 

Both options have advantages and disadvantages, as 

enumerated below. The main advantage of option A is 

representativeness, as the SWUT runs directly on the 

LEON processor, which is the final target environment. 

Nevertheless, it is also worth noting some drawback 

about portability, besides the need to have an external 

board (the Development Board) connected to the 

Simulation PC, which makes this solution less portable. 

On the other hand, the advantages of Option B (SWUT 

running on a LEON processor emulator) are the 

following: 

- Portability: It would result in a software only 

solution, which means that additional hardware is 

not required and that the portability of the SVF is 

greatly increased; 

- Flexibility: It offers a high level of flexibility, 

allowing the use of user-defined I/O interfaces, the 

possibility of linking the emulator with other user 

applications and the capability of tuning the 

emulator characteristics as needed. 

 
Figure 1: SVF design alternatives 

 

However, this approach also has some disadvantages, 

namely:  

- Realism: The use on an emulator instead of the real 

target has some limitations in terms of simulation 

representativeness, as some features may not be 

fully realistic. In the case of TSIM, the accuracy 

and generation of IEEE exceptions is host 

dependent and not always identical to the actual 

ERC32/LEON hardware. Still, the average timing 

accuracy of integer instructions is better than 0.5% 

and floating-point instructions have a typical 

accuracy of 2%. Nevertheless, these limitations may 

not be relevant for most of the software 

development phases, as it is still possible to test the 

algorithm performance and to estimate rather 

accurately the real-time behaviour of the 

development; 

- Speed: Depending on the host PC and on the 

selected LEON’s clock frequency, the simulation 

rate of the emulator may be slower than real-time. 

However, since an important part of the impact on 

simulation speed is expected to be on the Simulink 

side of the SVF, this is not expected to be an 

important limitation. 

An important issue regarding option B is the selection 

of the LEON emulator tool, which has been also 

identified as one of the main cost drivers. Three 

alternatives have been considered: TSIM (the most 

popular LEON emulator, but expensive), the Terma 

Emulator Suite [3] and the QERx emulator [4]. 

A trade-off has been made and it was concluded that the 

TSIM alternatives, although eventually eligible in the 

future, were not guaranteed to be a timely option to 



 

Deimos due to validation and legal issues affecting the 

Terma Emulator Suite and QERx respectively, so the 

TSIM emulator was selected for use in the SVF. 

The final cost of options A and B may be different for 

each company depending on existing and reusable 

elements. Assuming a project starting from scratch, 

where none of the required software and hardware is 

available to a potential user, both options are similar 

because the difference between the cost of TSIM 

(option B) and a development board plus the GRMON 

software (option A) is almost negligible. 

Table 1 summarizes the trade-off between both options. 

Table 1: Trade-off between design alternatives 
 LEON Board 

(Option A) 

LEON Emulator 

(Option B) 

Complexity HIGH HIGH 

Portability MEDIUM HIGH 

Flexibility LOW HIGH 

Realism HIGH MEDIUM/HIGH 

 

Therefore, taking into account the advantages and 

disadvantages presented above, the selected approach is 

option B, which also seems to be the most interesting 

for ESA (in the context in which the tool was developed 

and its adoption for future projects and missions) and 

for other potential users of such a tool. 

2.3 Environment-SWUT Data Interface 

The interface between the SWUT and the environment 

is designed with three main objectives, namely, to: 

- Establish a synchronization scheme for the flow of 

information and processing, in order to obtain a 

time-true emulation. 

- Allow the communication between both sub-

systems, defining an accurate exchange of 

information using the available low-level features 

of the host operating system. 

- Minimize the modifications to the SWUT required 

to port it to a Hardware-in-the-loop or real platform, 

making the interface with the simulated 

environment as representative as possible. 

The layered architecture of the interface is displayed on 

Fig.2. On the simulated environment side, a 

MATLAB/Simulink environment holds the top level 

system, which runs each module at the required 

frequency. On the other side, a SWUT Test-Bed 

supports the execution of the user-developed algorithms 

(the SWUT) and implements also an interface, in charge 

of enabling the communication between both modules 

and providing an abstraction layer between them. 

The connection with the SWUT Test-Bed interface is 

implemented in Simulink by using one or more S-

Function blocks developed in C language with access to 

the underlying host operating system (for using disk 

files or communication devices). The inputs and outputs 

of the S-Function blocks are implemented as MATLAB 

Bus objects, which explicitly define each signal type 

and size. These Bus objects translate directly into C 

structures and therefore allow the definition of a single 

interface for the SWUT Data Interface. 

On the SWUT Test-Bed side, the application is run on 

top of an embedded operating system designed for the 

LEON2 processor (RTEMS) and uses the TSIM I/O 

modules to access the host operating system features. 

A shared memory object is employed to establish 

communication between both sides. Due to the modular 

design of the interface, a common static library has been 

implemented to provide an abstraction of the host 

operating system layer and allowing the portability of 

the platform. The interface of the static library is 

composed of simple operations to read/write the shared 

memory and to send/receive signals for synchronization. 

The process of sending data from the environment to the 

SWUT Test-Bed to be used internally is as follows: 

- The data obtained in the Environment is directed to 

the S-Function that implements the interface with 

the SWUT Test-Bed. 

- The interface formats and packages the data to be 

sent, and delivers it using the host operating system 

facilities. After the information has been sent, it 

waits until the reception of a confirmation signal 

from the SWUT Test-Bed. 

- The SWUT Test-Bed receives the data and delivers 

it to the SWUT algorithms for its processing. When 

the process is complete, a signal is sent to the 

Environment to finish this processing cycle. 

 
Figure 2: Environment-SWUT data interface 

2.4 Environment-SWUT Time Synchronization 

Temporal synchronization between the Environment 

Simulator and the SWUT is required, because they are 

run as independent processes using different references.  

The Environment Simulator runs on Simulink (no real-

time at all, just simulation steps), resulting in executions 

that could be longer or shorter than the period defined 

for the different system tasks.  

The SWUT is run on a simulated real-time platform 

(with a real-time operating system and simulated HW, 

including the clocks and the operation count), which in 

turn, is running in the context of a Host Operating 

System (Windows). In other words, while the SWUT is 

run on simulated real-time (thanks to TSIM features), 

the user may experiment inconsistent execution global 

performance depending on several factors such as the 

simulator performance, the Host PC HW or the number 

of external processes running on Windows which 

interrupt the execution of the simulator. 

Moreover, some other characteristics of the system must 

be taken into account: 



 

- The Environment Simulator may have different 

MATLAB/Simulink modules running at different 

frequencies, each of them generating data that will 

be made available to the SWUT.  

- The Environment Simulator may receive data from 

the SWUT at different frequencies to be used by 

different modules. 

- Neither SWUT frequencies nor sequence of 

operation are known in advance. The SWUT shall 

be able to be configured to receive data at different 

frequencies. 

In our implementation, the SWUT Test-Bed is in charge 

of the synchronization with the Environment Simulator. 

Two different patterns can be developed: 

- Full Synchronized Pattern: the SWUT is executed 

when a synchronization signal is received from the 

Environment Simulator, after finalization of a 

simulation step. While the SWUT is executed, the 

Environment Simulator is blocked until the SWUT 

execution minimum period has finished and vice 

versa. There is no concurrence between the two 

sides of the simulation. This pattern is appropriate 

when both sides need the outputs of the other side. 

- Semi-Synchronized Pattern: the SWUT is 

composed of one or more tasks that execute with 

different frequencies, in parallel to the execution of 

the Environment Simulator. The mechanisms to 

synchronize the execution of the SWUT with the 

Environment simulator are the messages from the 

Environment to the SWUT. When the Environment 

simulator detects that the last message sent has been 

taken by the SWUT, it continues its execution 

without waiting for the execution of the SWUT. 

This strategy allows parallelizing the execution of 

the both sides, so it is appropriate when 

Environment simulator does not need the outputs 

produced by the SWUT. 

In order to perform closed-loop simulations, we have 

implemented the Full Synchronized Pattern, with the 

time master in the LEON Simulator side. Therefore, the 

Environment simulator executes a step when the 

synchronization signal is received from the SWUT, 

which remains blocked until new inputs are ready. 

2.5 Execution Model 

A first approach to the definition of the architecture was 

made by defining a periodic task in the SWUT Test-Bed 

that would run at the same frequency as the base step 

time of the GNSS Simulator, but this was later 

discarded for the following reasons: 

- The synchronization task in the SWUT Test-Bed 

has additional duties, as the processing of incoming 

data from the GNSS Simulator to translate it into 

the desired interface to be provided to the SWUT, 

and the generation of monitoring data. These 

operations may require a non-negligible processing 

time, which should not be deducted from the CPU 

time available for the SWUT execution. 

- Isolating the execution time of the SWUT allows 

realistic performance measurements, and can be 

used to define a duty cycle according to the time 

budget allocated to the SWUT in the final system. 

The implemented architecture, which solves the 

previous issues, can be summarized as follows: 

- A Timer is implemented in the SWUT Test-Bed 

with the same frequency as the highest frequency 

task in the whole system (e.g. if there is a module in 

the Environment simulator running at 1KHz, the 

Timer shall have a duration of 1ms) . 

- A Synchronization Task is implemented, that is 

enabled when the Timer ends and interrupts the 

execution of the SWUT, entering in Simulator 

Mode using the IO modules functionality (in 

Simulator Mode, the simulator pauses all the HW). 

In this mode a SW Bus analyses the messages ready 

to be sent to the Environment Simulator.  

- The mechanism to send messages from side to side 

is a memory mapped file, where each message has 

space reserved and a status word which controls if 

the message has been already read or not. 

- In the Environment simulator side, the model waits 

for new messages. When it is notified to run a new 

cycle, the model reads the new messages, executes 

the simulation step and writes all output messages 

in the shared memory mapped file. Afterwards, the 

Environment simulator waits to be signalled again 

to execute the next simulation step. 

- The SW Bus, in the LEON emulator side, analyses 

the received messages and puts the data in the 

positions to be read by the SWUT. The SW Bus 

returns the control to Synchronization Task, which 

arms the Timer again and goes to sleep, allowing 

the SWUT to continue its execution. 

Fig.3 shows a chronogram with an excerpt of the 

execution of an application composed by: 

- A GNSS Simulator (the Environment) working at a 

maximum rate of 1 KHz. 

- The SWUT with two application tasks, Task A at 1 

KHz and Task B at 500 Hz. 

2.6 Results Processing 

The processing of outputs from the SWUT and other 

monitoring data is performed on the MATLAB/ 

Simulink environment. The S-Functions that implement 

the communication with the SWUT provide as their 

outputs the SWUT output data as bus objects, which 

include the required feedback outputs to perform a 

closed loop simulation and to allow the comparison of 

the SWUT outputs to reference data generated in the 

Environment Simulator. Fig.4 shows an example of 

SWUT output (velocity computed on a GNSS receiver 

by the SWUT), compared with equivalent reference 

data. 

The monitoring data generated by the SWUT Test-Bed 

is also available in the MATLAB environment. This 

information allows the analysis of the performance 

(fidelity, real time behaviour, errors) of the SWUT. 



 

3. APPLICATION TO GNSS RECEIVERS 

The SVF described in this paper has been successfully 

used in the GNSS Dynamics Simulator and AGGA-4 

Test and Simulation Tool (GSTST) project [1], where 

the main objective was to develop a tool to design, 

perform a realistic analysis and finally, test GNSS 

signal processing and navigation algorithms for AGGA-

4-based GNSS receivers. AGGA-4 is the Advanced 

GPS / Galileo ASIC developed by ESA for GNSS space 

applications [2]. The GSTST tool provides a relatively 

inexpensive solution (when compared to currently 

available hardware-based solutions) for the simulation 

of realistic GNSS observables and measurements (as the 

software part of the receivers would see them) as well as 

of the AGGA-4 programming registers, allowing 

AGGA-4-targeted software to be tested without the 

need for the AGGA-4 chip or complex and expensive 

hardware setups. GNSS signal emulation is performed 

in MATLAB/Simulink by the use of DEIMOS’ 

GRANADA GNSS Blockset (formely GRANADA 

Factored Correlator Model Blockset) [6]. 

 
Figure 4: Example of SWUT output processing 

The data exchanged between the GNSS Simulator and 

the SWUT Test-Bed can be sub-divided into the 

following categories: 

- Hardware registers, which include 14 AGGA-4 

programming registers, IE and ME observables (20 

elements) per AGGA-4 channel (36 channels) and 

interrupt signals. 

- Shared GSTST variables, which include GNSS 

measurements (more than 10 post-processed 

observables), ephemeris, status flags and other 

GSTST internal variables and outputs (including 

user-definable outputs) per channel. 

- Shared SWUT variables, which include SWUT 

internal variables and outputs (including user-

definable outputs), configuration parameters, 

control signals, and performance monitoring signals 

(for SWUT profiling) per channel. 

Fig.5 shows an schema of the SVF configuration, where 

the different modules of the AGGA-4 are simulated on 

the Simulink side and communicate with the SWUT 

where the Tracking Loops algorithm and/or the 

Navigation Filter are executed on top of the LEON-2 

Processor Emulator. 

 
Figure 5: Example of SVF Usage for GNSS algorithms 

In the scope of this project, two SWUTs have been 

developed to demonstrate the usage of the SVF in 

different configurations: 

- Navigation Orbital Filter, with low frequency 

requirements and no parallelization. This SWUT 

implements the API to handle the Measurement 

Epoch signal generated in the GNSS Simulator with 

a frequency of 10 Hz. The SWUT receives 

measurement signals as well as satellite navigation 
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Figure 3: Time synchronization and data exchange 



 

data, and is capable of PVT generation in LEO and 

GEO orbits, as well as computation of Doppler 

aiding signals to be fed back to the simulated 

tracking loops. 

- Tracking Loop algorithms, with high frequency 

requirements and multiple channels processing. 

This SWUT has to attend different signals 

(Integration Epoch and Long Epoch) for several 

processing channels, which can be generated at a 

frequency of up to 1 Khz. This is done by 

implementing the APIs to handle both types of 

signals. In this case the SWUT obtains the 

correlator outputs and controls them by generating 

the required feedback signals. 

Thanks to the flexibility of the SVF the performance of 

the SWUT can be analysed and refined. For example, 

the Navigation Orbital Filter implemented has been 

tested with different configurations in the Environment 

Simulator describing different scenarios of satellite 

constellations. Fig.6 displays the different performance 

of the algorithm achieved in a scenario with GNSS 

satellite outage. 

The performance of the filter has also been analysed 

regarding its execution time and by tweaking the 

simulated system clock on the TSIM emulator, 

obtaining the results displayed in Fig.7. 

 
Figure 6: Performance Analysis – NOF application 

 
Figure 7: Execution Time Analysis – NOF application 

4. CONCLUSIONS 

A Software Validation Facility has been presented to 

support the development, analysis and test of a complex 

hybrid system where the SW algorithms interact with 

other parts of the system implemented in specific HW, 

simulated in Simulink. 

This tool provides a low-cost solution for a system 

developer to execute closed-loop simulations in a 

layered and realistic environment (including real-time 

constraints and real reaction of the system to the SW 

outputs), enabling the possibility of tackling an iterative 

and incremental development process, with frequent 

modifications of the SWUT and the environment, 

including their boundaries (i.e. a SWUT composed by N 

modules can be developed in an incremental approach 

implementing and validating module by module, 

simulating the other ones in Simulink, so what belongs 

to the SWUT and to the Environment simulator is 

different for every development stage). 

This way, the SVF allows to perform a wide range of 

tests (performance, accuracy, etc.) from early stages of 

the development process without the need for complex 

and costly HW setups. 

The presented SVF has been successfully used in the 

GSTST project, designed to support the validation of 

navigation algorithms candidate to be used with real 

AGGA-4-based receivers in future missions (e.g. 

GRAS-MetOp 2 [7] and other GNSS receivers).  
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