

A LIGHTWEIGHT COMMUNICATION PROTOCOL FOR EMBEDDED SYSTEMS

Antonio Latorre, José A. Pulido, Carlos Valle, Juan Pérez, Sergio Gómez de Agüero y Pedro Palomo

Elecnor-Deimos, Ronda de Poniente 19, 28760 Tres Cantos (Madrid), Spain.
antonio.latorre@deimos-space.com

ABSTRACT

This paper presents a communication protocol based on
the concepts and definition of the SOIS (Spacecraft
Onboard Interface Services) standard. The main
objective has been to design a lightweight protocol and
execution services layer, suitable for small projects in
the field of embedded systems, but flexible and
configurable enough to be reused in future projects and
re-targeting of current ones with minimum effort.

1. INTRODUCTION

Embedded systems are based on a wide range of
architectures and hardware elements, such as different
number and model of processors, operative systems and
communication buses. However, developing new ad-
hoc communication protocols for each mission is slow
and expensive.
For the last years, a large number of European public
institutions and private companies involved in space
missions have carried out a strong research effort
focused in defining a reference architecture [1.
Terraillon, J.L., Jung, A., Arberet, P. (SAVOIR-
FAIRE working group) et al (2010). Space On-Board
Software Reference] and give a boost to the component-
based engineering [2][3]. This way, a new component
developed in compliance with the reference architecture

 share

s, used to

di

rojects, reduce global costs

e.

nes:

y of the parts of the

f our projects:

s.

el.
Ease the implementation of safety aspects, fault

on.

ven engineering or component-

nted Development

k in the space systems

ording to a model based

y surveys about how to use the IMA

would be re-usable in different projects with minimum
effort and thus, reducing development periods and costs.
Currently, our company is involved in a number of
projects which are in the preliminary phases and even
belonging to different technical areas, they
common basic aspects (e.g. multi-node systems which
need a communication protocol). For instance:
- GNSS receiver: is a Global Navigation Satellite

System receiver platform for the demonstration of
advanced receiver technologies and applications
(e.g. multi-constellation with GALILEO and GPS).

- UAV control system: for UAV platform
validate new solutions and tackle existing
challenges in the aerospace engineering.

- FLYCON: defines a Formation Flying wireless
signal enabling the exchange data between
spacecrafts at high bit rate for short and me um development process and the correctness by

construction theory. range operations, integrating also ranging
capabilities for achieving relative navigation.

Due to the size and characteristics of these projects, a
full compliance with the ESA reference architecture is
considered an excessively ambitious objective for our
particular needs. However, the concepts fit perfectly, so

it is worth to make an effort at this moment, following
the general ideas and recommendations made by these
domain experts, applying them in order to reuse the
developments in several p
and also minimize the impact of a future migration to
the reference architectur
In summary, the main concepts to be taken into account
are the following o
- Module-based, distributed, extendable and based on

components.
- Layer-based, in order to minimize the impact of

changes (variability) in an
systems, for instance, the execution platform or the
communication data buses.

- Consider interoperability aspects and applicable
standards in the more usual domains o
space missions, Unmanned Aerial Vehicles (UAV)
and perhaps, radio-communication

- Take into account non functional requirements,
such as the computational mod

-
tolerance and fault detecti

2. STATE OF THE ART

Since several years ago, a number of projects and
working groups have been focused in reusing previous
software and not starting every project from scratch,
centering their efforts in techniques such as a reference
architecture, model dri
based development. These are some of the relevant
projects and activities:
- COrDeT (Component Orie

Techniques): definition of a generic architecture for
satellite on board applications.

- DOMENG (Framework for Domain Engineering):
establishes a work framewor
domain engineering, defining methodologies,
models and tools to be used.

- ASSERT (Automated Poof-Based Systems and
Software Engineering for Real-Time Systems):
bases for the definition of a reference architecture
for the ESA acc

- Securely Partitioning Spacecraft Computing
Resources: research on partitioned architectures.

- IMA for Space: workshop to provide ideas and
preliminar

(Integrated Modular Avionics) standard in space
missions.

- SAVOIR-FAIRE (Space AVionics Open Interface

 and

 flight hardware,
ermitting interoperability and also reusability, wh

implement, to be used

is wide enough to

features in the future. Both characteristics are crucial to

 change, the affected code will be

wer.

equent V&V campaign is

 application needs at present

e due to the

essaging with a bounded latency. It

tinues

a

le instruction (from

, read, write, etc) and

to
provide functionalities such as Pulse per Second.

aRchitecture): working group focused in reference
architectures for space systems.

- CCSDS: working group oriented to the
development of standards for Communications
data Systems in space missions, and specifically
SOIS (Spacecraft Onboard Interface Services).

After analyzing the state of the art, we decided to use
the results of SAVOIR-FAIRE [6] and more specifically
the proposed use of the SOIS standard as a reference
[4]. The main reason behind this decision is that SOIS
standard is thought to be an important part of the ESA
reference architecture, in the future. It has the objective
of improving the systems design and development
process by defining generic services that will simplify
the way flight software interacts with
p ich and in future applications:

- Command and Data Acquisition Service:
commanding and data acquisition by applications
for hardware devices such as sensors and actuators
independently of their locations. Through the
Device Access Service provides basic reading from
and writing to devices regardless of their location.
Device Data Pooling and Device Virtualization
have been discarded at this stag

are also our main objectives.

3. PROPOSED ARCHITECTURE

Currently, there is not a commercial SOIS imple-
mentation available yet. However, the final version of
the standard is about to be published and the existence
of COTS providing the SOIS service in the near future
is highly possible. While a full implementation of SOIS
is out of our scope due to its complexity, it would be
really positive to use of the ideas that make up the core
of the standard in order to design a light-weight
communication protocol similar to SOIS (especially in
its layered approach and the interfaces provided to
applications), easy to
immediately in current projects and extensible in order
to use it in future projects.
There are two basic ideas that have been extracted from
SOIS and used as our reference, namely, the layered
architecture of the protocol and the service oriented
schema. The former is similar to other ones, such as
PolyOrb [5], which distinguishes between application
personality and protocol personality layers; SOIS is
divided in three layers: application support, transfer
(optional) and subnetwork. This stratification provides
the isolation and flexibility needed to minimize the
impact produced by a change at a given level in the
other levels of the architecture. The later consist of the
fact that every layer contains a number of service sets,
i.e. Message Transfer Service, File Service, etc. In turn,
every set provides a number of services, i.e. wallclock,
file transfer, etc. The services range
support the usual applications needs, nevertheless, it can
be extended to support future needs.
Thank to these properties, the isolation among the
different elements (application, drivers, RTOS…) of a
processing node is maximized. Furthermore, it is an
expandable structure that makes easier to add new

ease the maintenance of an application because, when it
comes to introduce a
easily bound. Thus:
- The number of modules to modify is lo
- Introducing new errors is not so easy.
- The impact in the subs

considerably reduced.
Figure 1 shows the lightweight protocol architecture,
composed by three layers: the Application Support layer
the Subnetwork layer and the Configuration layer. In
general, the SOIS most sophisticated characteristics as
auto-detection, advanced interaction with hardware
devices or dynamic re-configuration have been dropped
down in the lightweight implementation in order to
simplify it as much as possible. The Application
Support layer, which is the closest to the application,
has been reduced to four simplified services, considered
enough to satisfy the basic

complexity of their implementation.
- Message Transfer Service: for communication

between applications using asynchronous, ad-hoc,
discrete m
includes:
⋅ Asynchronous Send/Receive: the sender con

its execution and does not wait for an ACK.
⋅ Synchronous Query: A message is sent to the

destination user in a synchronous manner and
corresponding reply message is received from it.

⋅ Publish/Subscribe (static): a static table keep a list
of message types publishers-subscribers; this way,
the sender is able to disseminate information sets
to several receivers with a sing
the application point of view).

- File and Packet Store Service: reduced to just the
services related to files, File Transfer and File
Management, it is used by applications to,
management (create
transference of files.

- Time Access Service: provides access for
applications to the system time with known
accuracy independent of their locations thanks to
the Wall Clock Capability, which enables the
application to read the time on demand. Also, given
the fact that one of our projects is a GNSS receiver,
it is quite feasible that a future extension contains
the Alarm and Metronome features, really useful

Figure 1: Communication protocol architecture

The Application Support layer is, in turn, supported by
the Subnetwork layer, which is composed by a set of
services together with the Data Link Convergence
Layer. The former deals with low-level details, such as,
memory access, synchronization, packets management
and so on, while the latter is responsible to adapt the
details related to the physical interface (Ethernet, CAN,
SpaceWire…). The subset of SOIS subnetwork services
selected is the following ones:

- Packet Service: The SOIS Subnetwork Packet
Service transfers Service Data Units, which
comprise variable length, delimited octet strings,
from one endpoint on a data link/subnetwork to
another endpoint on the same data link/subnetwork,
using the SOIS data link functions to move the
information across it. The original four service
classes have been reduced to two:
⋅ Best effort: provides for non-reserved, try once

communication. It makes no promises about the
time of delivery, the network bandwidth available,
or the error rate of the traffic. Several priority
levels are provided for Best Effort traffic. Traffic
with a higher priority level is treated preferentially
compared to traffic with a lower priority level.

⋅ Assured: provides for non-reserved communi-
cation with retries. It tries to ensure that the traffic
arrives at the intended destination. If the data does
not arrive safely at the destination then it is resent.
To support this, the destination acknowledges the
receipt of Assured traffic. Several priority levels
are provided for Assured traffic, which are the
same levels as those for Best Effort traffic.

- Memory Access Service: provides a means for a
user entity to retrieve or change data located in
memory hosted by a node on a data link-
subnetwork, including:

⋅ Read: to retrieve the contents of memory from
specific locations(s) in a specific memory resident
at a specific subnetwork location.

⋅ Write: to change the contents of memory at
specific location(s) in a specific memory resident
at a specific subnetwork location.

⋅ Read/Modify/Write: to request the service of
retrieving the contents of memory resident at a
specific subnetwork location and to modify that
data whilst blocking attempts by other entities to
modify it, which is especially useful in multi-core
architectures where a data may be accessed
concurrently from several processing nodes.

- Synchronisation Service: The SOIS Subnetwork
Synchronisation Service provides a means for a user
entity to maintain knowledge of time which is
common to all data systems on the subnetwork.

Finally, in order to make the implementation as simple
as possible there is a transversal Configuration Layer. It
has been defined as a container of meaningful
information in order to perform the communication
between parts. This information is used to create static
communication links that shall be used by the user for
different purposes. Of course it is very important that
both sides of the communication agree a clear definition
of all the information contained in this configuration
layer. This configuration layer is defined, in principle,
as static; nevertheless, the design of the architecture
allows to provide some dynamism to this layer by
offering an interface to the user to modify the contents.

4. IMPLEMENTATION

4.1. First Implementation Features

The first implementation of the communication protocol
is intended to support the Monitoring & Control (M&C)
module of a GNSS receiver and it is being carried out in
an extensible way. The main goal of this initial

approach is to offer the Message Transfer Service
(MTS) to the M&C system through an IP network. This
M&C system must support the sending/receiving of
telecommands, telemetry and files. Of course not all the
functionality available in the architecture is needed for
this purpose so a reduced version of the architecture is
being implemented containing only the Message
Transfer Service and File Store in the Application
Support Layer and, the Packet and Memory Access
Service in the Subnetwork Layer.
When designing the architecture of the receiver and its
communication services, several challenges arose:
- The TM/TC to the receiver has to be defined

following a very flexible approach, given that the
list of properties and functionalities of the receiver
and the commands it can accept is not fully defined
yet. In addition, while present commanding needs
are small, future evolutions of the receiver can
change the situation.

- The physical network access of the receiver is
thought to change across the different possible uses
of the receiver (eg. Ethernet, bus CAN, others).

- The resources available to the project are limited.
The method to overcome these challenges was to define
a set of robust layers and interfaces but at the same time
giving flexibility for its implementation in a progressive
approach. This was achieved by defining the following
elements of the proposed architecture:
- Message headers and encapsulation: the size, type

and encoding of each element is clearly defined to
allow the communication between layers of the
same level on different systems. Each field has a
specific objective, like defining the type of message
or service being used. This structure allows adding
as many future message types as needed.

- Layer services and information to be exchanged:
the services offered in each layer are detailed as a
set of interfaces to be used by upper layers or
needed by lower layers. The properties of the
parameters used in the interfaces are specified.

As a result of this flexibility, it has been possible to
implement the architecture over two different platforms:
- Receiver M&C application in a resource limited

CPU Soft-Core, using structured programming (C
language) and send/receive style execution flow.

- Standard PC client, using object oriented and event
driven programming (Java language).

The use of the configuration layer provides also to the
system a good degree of flexibility at the same time it
makes the implementation easier. For example it is
foreseen to send different TM blocks to several
destinations. This objective will be achieved just by
editing properly the configuration layer. This makes that
the user level code does not have to be changed by
adding new sending calls to different destinations, but
only accessing to the appropriate configuration services
through its interface.

4.2. Difficulties to Overcome

As the architecture design matured, the complexity of
managing multiple devices and message flows became
apparent. For instance:
- Resource blocking is an outstanding issue: as

communication through physical devices can imply
blocking for an unknown lapse of time, it is
necessary that the implementation allows using the
rest of the data links even if one of them is currently
busy. This is achieved by using message queues and
threads to process them. Furthermore, the
implementation of some services in the intermediate
layers can lead to blocking too, as is the case of
fragmented file transfer; and in this case it is
important to carefully design the message flows to
discover the choke points and use queues, threads or
other mechanisms to avoid blocking. Figure 2
shows how this problem has been managed.

- In the case of a reliable (assured) connection, that
requires establishing a dedicated channel of
communication before starting to exchange
information, it is important to note that one of the
sides of the communication can remain blocked
until the other side start the connection dialog. This
could be an issue and must be considered in the
implementation if the sides are expected to run
independently.

4.3. Extensions

Figure 1 above showed in black font the services that
have been included in the first implementation and in
grey font those that are planned to be included in the
near future. The first service to be added in the
Application Support layer is the transmission of
synchronous messages, where a message response is
expected for each message sent. In order to avoid a
blocking behaviour when using this service, we have
added a transaction identifier in the message structure.
By using this field it is possible to send a synchronous
message on a non-blocking interface, and obtaining later
the corresponding response received (or a notification if
a timeout has expired). It is also our priority to add
assured transmission of packets, which will be
supported first of all by an Ethernet/TCP link. In the
near future is also planned to support other links such as
bus CAN or RS-422 as needed.
The proposed architecture is independent of the role
played by the entities in the system, allowing master-
slave or master-master communications. Thanks to this,
the use of the protocol is not limited to communication
between remote systems, and therefore future upgrades
of the implementation will be used to access hardware
specific modules or ease the interaction between
multiple processor cores.

Figure 2: Concurrency view of the implementation

5. CONCLUSIONS

The component-based development techniques and
reference architectures are key issues to reduce costs
and development periods. The definition of a light-
weight communication protocol, based on the recent
results of European researches and standards, allows us
to have at our disposal a flexible and extensible
component to be used in present and future small and
medium-sized projects, backed by the experience of
domain experts, that will avoid to design ad-hoc
protocols once and again, reducing costs and
development periods. Moreover, following the line
drawn by previous ESA-related projects will ease a
future full-compliance with their requirements and
standards in the development of applications / building-
blocks, helping our company to succeed in establishing
a position for itself among the providers of applications
and building-blocks compliant to ESA needs for future
projects.

REFERENCES

1. Terraillon, J.L., Jung, A., Arberet, P. (SAVOIR-
FAIRE working group) et al (2010). Space On-
Board Software Reference Architecture. In
Proceedings of the Data Systems in Aerospace,
DASIA conference. Budapest, Hungary.

2. de la Puente, J.A., Zamorano, J., Pulido, J.A. and
Urueña, S. (2008). The ASSERT Virtual Machine:
A Predictable Platform for Real-Time Systems. In
Myung Jin Chung, Pradeep Misra (eds.),
Proceedings of the 17th IFAC World Congress.
IFAC-PapersOnLine.

3. Panunzio, M., Vardanega, T. (2009). On Component-
Based Development and High-Integrity Real-Time
Systems. In Proceedings of the 15th IEEE
International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA
09. ISSN: 1533-2306, pages 79-84.

4. Consultative Committee for Space Data Systems
(CCSDS). Spacecraft Onboard Interface Services.
Green Book. Issue 1. June 2007. CCSDS 850.0-G-
1.

5. Vergnaud. T., Hugues, J., Pautet, L. and Kordon, F.
(2004) PolyORB: a schizophrenic middleware to
build versatile reliable distributed applications. In
Proceedings of the 9th International Conference on
Reliable Software Techologies, Ada-Europe 2004
(RST'04), volume LNCS 3063, pages 106 - 119,
Palma de Mallorca, Spain. Springer Verlag.

6. Savoir-Faire working group. Savoir-Faire Onboard
software reference architecture. TECSWE/09-289/
AJ

http://www.ifac-papersonline.net/cgi-bin/links/page.cgi?g=Detailed/33841.html;d=1
http://www.ifac-papersonline.net/cgi-bin/links/page.cgi?g=Detailed/33841.html;d=1

	1. INTRODUCTION
	2. STATE OF THE ART
	3. PROPOSED ARCHITECTURE
	4. IMPLEMENTATION
	4.1. First Implementation Features
	4.2. Difficulties to Overcome
	4.3. Extensions
	5. CONCLUSIONS
	REFERENCES

