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ABSTRACT  

1. CONTEXT OF THE MGF 

Galileo will be an independent, global 

European-controlled, satellite-based navigation 

system. It will have a constellation of satellites 

monitored and controlled by a Ground Control 

Segment (GCS) providing also the capability to 

detect satellite or system malfunctions and 

broadcast real-time warnings (integrity 

messages). 

GALILEO is a programme sponsored by the 

European Space Agency and the European 

Union. 

The overall Galileo System is divided into two 

main segments: 

 The Galileo Space Segment (SS) will 

comprise a constellation of 36 satellites in 

MEO. Each satellite will broadcast four 

ranging signals carrying clock 

synchronisation, ephemeris, integrity and 

other data, depending on the particular 

signal. A user equipped with a suitable 

receiver will be able to determine his 

position to within a few metres when 

receiving signals from visible Galileo 

satellites. 

 The Galileo Ground Segment (GS) will 

control the whole Galileo constellation, 

monitor the satellite health and up-load data 

for subsequent broadcast to users. The key 

elements of this data such as clock 

synchronisation, ephemeris and integrity, 

will be calculated from measurements made 

by a network of Galileo receiving stations. 

The GS is split into: 

o The Ground Control Segment (GCS) in 

charge of monitoring and control of the 

Galileo constellation. 

o The Ground Mission Segment (GMS) in 

charge of the determination and 

dissemination of the navigation and 

integrity data and of the external 

components data (ERIS, SAR, CS, etc.). 

It is decomposed into several “elements”, 

one of which is the Message Generation 

Facility (MGF). 

The MGF is developed by an industrial 

consortium headed by DEIMOS Space, as “N-

2” element prime. The GMS itself is the 

responsibility of TAS (Toulouse) as “N-1” 

segment prime. 

2. OBJECTIVES OF THE MGF 

The Message Generation Facility is one of 

several elements, along with the OSPF, IPF, 

Key Management facilities and MUCF, that 

comprise the “processing chain” of the GMS.  

The MGF is in charge of multiplexing and 

routing navigation/integrity data to be sent for 

mission uplink. It also performs multiplexing of 

Search & Rescue (SAR), Commercial Service 

(CS) and external regional integrity data 

(ERIS). It is the meeting point for all the data 

streams that make up the C-Band Uplink 

Messages.  

Its mission is to elaborate messages as specified 

in the GMS to Space ICD, by multiplexing 

those data that allow providing the Open 

Service (OS), CS, Safety of Life (SoL), Public 

Regulated Service (PRS), SAR, and ERIS 

services. The multiplexed streams are then 

forwarded to the Uplink Stations 

(ULS)/antennas according to pre-defined 

routing tables constrained by the ULS antennas 

tracking plan and by needs specific to each 

service.  

Messages to be provided to the GCS (for the 

Degraded Navigation Service, through S-Band) 

are also prepared by the MGF. In particular, 

selection processes are implemented to handle 

the various redundancies of input streams. Also, 

the MGF has to manage the specific feature of 

the integrity messages in the Galileo SIS by 

building messages with integrity Tables 

(periodically) and with related Alarms 

(continuously) on the basis of input integrity 

data. 

The handling of Integrity data is time and safety 

critical, and the MGF implements a Safety-

Monitor (or “Safety Box”) capable of 



 

identifying, and isolating, failures in the 

processing. Safety Monitor is the main barrier 

included in the architecture to avoid integrity 

data corruption (Critical Event), and it does 

verifications on alert generation, HIT 

generation, Region Status, Alert counter 

management, AIT update, application CRC 

verification, IPF input data selection and ERIS 

data. 

In summary, the MGF must ensure the 

following real-time processing functions, 

among others: 

 Navigation, Integrity, ERIS, SAR, etc. data 

acquisition and processing 

 Time/Safety-Critical Integrity alarms 

elaboration for SoL and PRS services. This 

data is composed of the safety-critical signal 

status alarms that indicate to the final users if 

the positioning data sent by a given satellite 

can be trusted. 

The integrity alarms produced by the GMS 

have to be sent to the final users in a limited 

time (TTA – Time To Alarm). Each element 

in the GMS has been assigned a particular 

portion of the TTA. 

 Generation, at 1Hz, of dedicated message 

sub-frames for each Galileo satellite, 

containing: 

o OS navigation data in order to provide the 

satellites with orbit determination data, 

satellites clock correction data with 

respect to Galileo System Time (GST), 

Signal-in-Space Accuracy (SISA) data, 

ionospheric products and other services 

o SoL navigation data, providing the same 

products as above 

o SAR data for given satellites and SAR 

beacons 

o Encrypted CS data for transmission to 

specific regions 

o Encrypted PRS integrity and navigation 

data, including integrity alarms for PRS, 

status of the Galileo constellation, 

SISMA data for the constellation, and a 

complete set of PRS navigation data 

 Generation, at 1Hz, of dedicated integrity 

message for each Galileo satellite, containing 

integrity data for the SoL service. This data 

includes: 

o Integrity alarms for SoL 

o Status of the whole Galileo constellation 

o Hard Integrity Tables (HIT) containing 

the predicted SISMA data for the whole 

constellation 

o External Service Providers (ERIS) 

integrity data, dedicated to specific 

regions 

 Generation of the Quality of Service (QoS) 

indicators to be used by the GMS to select 

the best messages to up-link 

 Generation of the corresponding ground 

assets technical monitoring data 

 Generation of mission monitoring data 

3. ELEMENT INTERFACES 

The figure below shows a basic representation 

of the external interfaces of the MGF Element, 

and includes the associated external data flows 

between external elements (inside and outside 

the GMS) and MGF. 

 

Figure 1. MGF Interfaces 

The physical interfaces between the MGF and 

other elements are as follows: 

 The GCC Real-time LAN (RT): Using the 

UDP/IP protocol.  

 The GCC Near real-time LAN (NRT): 

o Using the TCP/IP protocol for non-real 

time data transfers.  

o Using the FTP protocol for transferring 

routing tables, configuration files and 

local storage data migration to the global 

archive. 

o Using the SNMP protocol for GACF / 

LME control and monitoring transfers.  



 

 xKMF Security Ports: Dedicated Ethernet 

lines, using UDP/IP for real-time transfers. 

 The PTF time dissemination network 

(IRIG-B): The time signal sent by the PTF 

facility is received in the MGF by a time 

acquisition card. 

 Local Maintenance Interface (LMI): This 

is a local network port used for element 

maintenance and test.  

 Test ports: Used in all modes except “Off” 

to send potentially – for test and observation 

purposes – all MGF products. 

 Front Panel LEDs: give a visible indication 

of the current mode and status of the MGF. 

4. ARCHITECTURE 

Fig 2. illustrates the physical architecture of the 

MGF. 

It comprises three processing boards, two of 

which have a SATA Hard Disk for file storage, 

and a VMEbus backplane that provides the 

means to implement inter-board 

communications (as well as power distribution). 

Two of the boards implement the external 

interfaces. All boards have a flash disk to 

support the boot process. The hardware has 

been integrated in a VME rack by Thales 

Computers.  

One board contains two software partitions 

(CPU time and memory space partitioning), 

allowing the DAL-B Safety Monitor to be 

hosted in the same board as the DAL-C frame 

generation software that it protects. The 

underlying real-time operating system is a 

version of LynxOS-178B, from LynuxWorks, 

tailored for use in Galileo. 

The software architecture has been decomposed 

at the highest level into three “components”: 

Message Processing & Uplink Frame 

Generation (MPUFG), Monitoring & Control 

(M&C) and External Interfaces (EIF). MPUFG 

(which includes the Safety Box) is contained 

entirely within Board 1, while the other two 

components, M&C and EIF are present in all 

three boards. The relevant components are 

compiled and linked to produce the application 

software executables that run on each 

board/partition.  

In addition, dedicated “loader” programmes 

have to be developed per board to support the 

boot process, and these are considered part of 

the M&C. 

 

Figure 2. MGF Interfaces 

The software architecture has been decomposed 

into around 280 terminal HOOD objects (not 

including OP_Control objects) across all three 

SW components, resulting in individual objects 

that are a manageable size and where each 

object is traced to a reasonably small number of 

requirements. 

5. ANALYSIS AND DESIGN 

The MGF element functional decomposition 

uses IDEF0 notation, allowing it to be presented 

in an ordered and hierarchical way. The 

principal functions are decomposed into sub-

functions, the incoming and outgoing data 

flows, control commands, resources, etc. 

At software-level, in the Software System 

Specification, the technique of “Functional 

chains” has been applied. 

The software life-cycle caters for DALs “B” 

(Safety Box, including “agents” of M&C and 

EIF), “C” (the rest of MPUFG, a large part of 

EIF and another M&C agent) and “E” (a large 

part of M&C and another EIF agent). As can be 

seen, different pieces of each SW component 

have to be developed to different DALs. 

The software architectural design has been 

performed using the Hard Real-Time 

Hieracrchical Object-Oriented Design (HRT-

HOOD) methodology (supported by the 

“Stood” tool from Ellidiss).  



 

The requirements are managed in a DOORS 

database, for easy exchange with the GMS 

prime, but in addition, the traceability between 

SRDs and the design model in Stood is 

supported by the “Reqtify” tool from TNI, 

which acts as a bridge between DOORS and 

Stood. 

6. DEPENDABILITY AND SAFETY 

As the MGF is a safety-critical element in the 

real-time processing chain in the GMS, a large 

effort has been made on the RAMS activities. 

Initial Fault Tree Analysis (FTA) was 

performed in order to allocate the SW DAL (i.e. 

demonstrate that the barriers defined in the 

design allow the DAL to be reduced). In 

parallel, initial hazard analysis (HA) was 

performed at the very beginning of the design 

(i.e. at functional level). Hazards identified at 

this level (e.g. possible Single Point Failures) 

were mitigated by injecting recommendations 

into the design.  

Once the SW/HW was defined (taking into 

account the results of the initial RAMS 

activities) a complete set of RAMS analyses 

were performed: HW analysis (Reliability and 

Maintainability), FMECA, FTA (both 

qualitative and quantitative), HA for “personal 

safety”, HSIA, CM&CCA and COA. All these 

analyses generate recommendations that are 

then injected into the design, or design process, 

in order to mitigate the identified critical items. 

Exhaustive follow-up of those recommendations 

is done in order to assure their correct 

implementation. 

7. DIFFICULTIES AND PROBLEMS 

THAT HAD TO BE OVERCOME 

7.1. Outline 

The remainder of this paper addresses the main 

technical issues that presented some difficulties 

and interesting problems that had to be solved in 

the specification and design of the MGF. 

Briefly, they can be summarised as follows: 

 At first, the MGF was expected to be 

implemented on a single board (single 

processor). However, for several reasons, the 

architecture is now the three-board solution 

presented above.  

The reasons include the evolving 

requirements regarding physical interfaces to 

the external elements, feedback from RAMS 

analyses (DAL-reduction, safety barriers and 

critical items) the need to separate the “soft” 

real-time processing (of asynchronous 

external inputs) from the truly “hard” real-

time processing (associated mainly with 

message processing and frame generation), 

and even the raw processing power (with 

margin!) that it requires (particularly in the 

time-critical segment of the processing that 

contributes to the Time-To-Alarm). 

The three-board design solved the problems 

inherent in the original one-board design, but 

created other problems of its own, that 

required creative and novel solutions. 

 Time synchronisation across three boards, 

using the VME to distribute the time 

received by a single IRIG-B on one of the 

boards, presented quite a few headaches.  

Careful time synchronisation is essential to 

ensure that the VMEbus is shared by all three 

boards correctly (they all refer to the same 

time schedule for exchanging messages via 

the bus). 

 The automatic boot procedure for the three 

boards required a considerable amount of 

thought and effort to develop.  

It is only partially supported by the operating 

system on each board. The application 

software (including the “loaders”) have to 

manage and control the boot and 

initialisation of the three boards, in a fully 

co-ordinated manner, and including the 

commanded (from the GACF) mode 

changes. 

These problems are explored in more detail 

below: 

 

7.2.  Three Processing Boards 

RAMS analyses at segment (GMS) level 

determined that the MGF should be assigned 

software DAL-B. However, as a result of the 

element-level RAMS process, different software 

components or functions have been given 

different DALs. A condition for this is that the 

software parts with different DALs must be 

separated from one another such that runtime 

errors are prevented from being propagated 

from lower to higher DAL software. 

Our initial approach was based on using a DO-

178B (“ARINC653-like”) compliant  operating 

system that supports time (CPU) and space 

(memory) partitioning, and all of the software 

executing on the same board. 

The MGF has many external interfaces to the 

rest of the GMS. It is connected to: the real-time 

(RT) LAN for receiving and sending data at 

1Hz (e.g. input integrity data from the IPFs, 

output uplink sub-frames to the ULSes); the 

near real-time (NRT) LAN for exchanges at a 



 

lower frequency, including the command and 

monitoring interface with the GACF; and the 

dedicated Ethernet interfaces for exchanging 

messages with the security elements (xKMF).  

A single board could not support the required 

number of Ethernet ports, and that is one reason 

for extending the design to several boards.  

Another important reason is that the processing 

of received UDP/IP and TCP/IP messages, 

performed in the RTOS, is done in periods of 

time that cannot be controlled or guaranteed by 

the application software. That cannot be 

tolerated in a safety-critical hard real-time 

system. The sequence of functions that generate 

the uplink sub-frames form a kind of “critical 

path”, where the CPU margins (between the 

deadline for one step and the latest start of the 

next step) are as short as a few milliseconds. 

These margins could be consumed if extraneous 

activity, namely the RTOS handling messages 

arriving from the LANs, were allowed to pre-

empt the application just at the worst moment. 

That would make it impossible to guarantee the 

MGF’s critical TTA-related deadlines for the 

generation of the uplink sub-frames. Therefore, 

the processing of the network traffic, both input 

and output, has been put onto boards 2 (RT) and 

3 (NRT), leaving board 1 to perform uplink the 

message generation unmolested by sporadic 

interruptions coming from the external 

interfaces. 

The  3-board architecture solved the problem of 

how to support the many external interfaces of 

the MGF, but it raised another problem, namely 

the internal interfaces. Input data to be used in 

the production of the uplink sub-frames arrives 

in boards 2 and 3, but the sub-frames 

themselves are built in board 1. Those sub-

frames are sent to the mission data distribution 

network (MDDN) via the RT LAN through 

board 2. This implies that a lot of data has to be 

moved about between boards, in real-time.  

The first part of the solution was to use the 

VMEbus to exchange data between boards. 

However, that solution comes at a cost. We still 

have to guarantee those critical deadlines for the 

uplink sub-frame generation in board 1, so the 

VME traffic has to be carefully controlled, such 

that it is deliberately scheduled to occur at 

allotted times. That means the times for the 

VME exchanges have to be known by design, 

and have to fit into the overall schedule of all 

the activities that occur during each 1-second 

cycle. In particular, there is a certain span of 

time (around 100ms) leading up to the critical 

deadline for sending the generated sub-frames 

from board 1 to board 2, where the margins are 

very short, and almost no other VME traffic can 

be done in parallel (VME traffic is not 

instantaneous, it implies a CPU load on the 

origin and destination boards because of DMA 

transfers robbing CPU cycles). 

So, the next part of the solution was to organise 

design an application-level “scheduler” that 

initiates VME transfers according to a pre-

defined, fixed plan. That plan has to 

accommodate the worst-case traffic scenario, 

and include margins (for error, or for 

minimising the impact of future changes to the 

scenario). 

The design of the VME bus access plan had to 

cope with some other problems: 

 Partition time-slicing in Board 1 

The time-slicing between the two partitions 

in B1 introduces jitter in the initiation of 

VME transfers, because when one partition is 

programmed to start a transfer at time t, the 

other partition might be scheduled by the 

RTOS, so the first partition might not 

actually be able to start its transfer until it 

gets the CPU again, at the next time slice, i.e 

.at t+(time slice). Furthermore, if a transfer 

takes longer than the time slice of the 

initiating partition, the transfer will be 

suspended while the other partition is 

scheduled, resuming when the initiator gets 

its next time slice. 

This is illustrated below: 

 

FG at (1), which is during the 3rd ms of its 

1st time slice, initiates a transfer with a CPU 

execution time of 7ms. During that time, SM 

will be scheduled three times (for a total of 

3ms), so we say that the time-slice overhead 

is 3ms. 

 Ensure that the processes contributing to the 

TTA have exclusive access to the VME 

when they need it. 

Other VME traffic that has nothing to do 

with TTA is allocated VME time slots 

before the TTA-processing cycle or after the 

last TTA deadline, so that they don’t 

interfere with the TTA. 

The fixed “VME bus access plan” is 

implemented in all three boards by a high-

priority cyclic task executing at 500Hz, i.e. the 

schedule is composed of 500 slots of 2ms each. 



 

The same, common schedule is used in all three 

boards. When a transfer needs more than one 

slot, then consecutive (contiguous) slots are 

allocated in the schedule. 

In most cases, the entire transfer of data can be 

performed in one or more VME slots in the 

same 1-second cycle. However, in a few cases, 

where a large amount of data has to be 

transferred, the approach is to spread the 

transfer over several 1-second cycles. In each 

cycle, a reasonable amount of data is 

transferred. The duration of this type of transfer 

is defined with the aim of making good use of 

the VME (by transferring data in large chunks, 

so that the transfer of the entire data does not 

take an unnecessarily long amount of time).  

The VME bus schedule is synchronised with the 

GST epoch, i.e. with the 1-second time signal 

coming from the IRIG-B. It therefore relies on 

that time synchronisation between boards to 

ensure that the VME bus usage is synchronised. 

The schedule 

says when to read, when to write, and what type 

of message/data is to be transferred. 

The VME schedule allocates time slots for all 

possible transfers that can occur each second. 

Some transfers are not necessarily performed 

every second. When there is no such transfer to 

perform, there will simply be no data available 

to transfer, so the allocated time slots on the 

VME will be “idle”. 

There is another important aspect of this inter-

board communication point that needs to be 

highlighted here. When data is exchanged 

across boards, it is being exchanged between 

software with different DALs. It is imperative to 

prevent the propagation of faults from lower to 

higher DALs, so the inter-board messages are 

protected by several means: 

 They are CRC-protected 

 The transfers via VME between boards, 

regardless of the direction of the data flow, 

are always initiated from the board 

containing the highest DAL software. B1 is 

DAL-B/C, B2 is DAL-C, and B3 is DAL-E. 

So, transfers between B1 and either B2 or 

B3, are performed under the control of B1. 

Transfers between B2 and B3 are performed 

under the control of B2. This means that a 

B3 never writes to the RAM of B2, and B2 

never writes to the RAM of B1. 

 Each type of  message has a unique, 

dedicated area in the exchange memory, and 

they each have an associated counter. The 

counter is used to make sure that old data 

(that should have been updated with a new 

message, but got left behind because of a 

fault in the originating board) cannot be 

mistaken for new data.  

The tasks that produce the data to be sent over 

the VME place their data into a buffer in the 

originating board. The VME scheduler task, 

when the allotted time slot is reached, triggers 

the processing of the relevant buffer, fetching 

the stored data and managing it’s transfer.  

Similarly, when data is scheduled to be read, the 

VME scheduler task on the higher-DAL board, 

at the allotted slot time, initiates the transfer and 

deposits the received data into a buffer from 

where it can be picked up by the destination 

task (the one that actually uses it for 

something). This ensures that the VME traffic 

happens in the allotted slots, rather than being 

determined by when the producer/consumer 

tasks perform their work. Note that when the 

VME scheduler in a lower-DAL board triggers 

a read or write, it does not actually initiate any 

traffic on the VMEbus, but instead merely 

access the VME-mapped RAM in its own 

board, and moves data to/from that area and the 

local buffers (that are accessed by the other 

producer/consumer tasks). 

Of course, all of this relies on accurate time 

synchronisation between all three boards, which 

is another tricky problem, as we shall see next. 

 

7.3. Inter-Board Synchronisation 

There are three boards in the MGF, but only one 

IRIG-B card, which is connected to Board 1. 

Therefore, the other two boards do not have 

direct access to the GST. 

Nevertheless, all three boards to set their clocks 

to be synchronised to the external time from the 

PTF, not just for the purposes of generating or 

verifying time-stamps on messages, but also in 

order to ensure that their respective VMEbus 

schedulers are synchronised with respect to each 

other, as explained previously. 

This is performed by a task in board 1 (DAL B 

partition) that acquires the external time from 

the IRIG-B signal, updates the system time of 

the Board 1, immediately writes that time into a 

reserved VME-mapped location in the other two 

boards, and then generates interrupts in the 

those boards in order to trigger them to go and 

synchronize their own system clocks using the 

time provided by B1.  This is done once every 

second, so that there is no significant drift 

between boards in the meantime. 

However, there is another little problem. Board 

1 has two partitions, and jitter caused by the 

partition time-slicing (as already mentioned). 



 

The boards would be synchronised badly if the 

procedure was unlucky enough to set the system 

time just before a partition time-slice came 

along, and then interrupt the other boards just 

after the other partition time-slice finished, 

because 3ms (enough to invalidate the VMEbus 

traffic plan) would have elapsed in the 

meantime!    

Therefore, the synchronisation task in Board 1 

(DAL-B) has to be “uninterruptible”.  

The synchronisation task is very high-priority, 

and when it starts (once each second), it goes 

into a continuous loop, reading the time, and 

comparing it with the previous time it read. 

When it sees that there has been an 

(approximately) 3ms jump in the time (instead 

of the expected, very short time difference), it 

deduces that there must have been a time-slice 

in the middle. Therefore, it also knows that it 

must be at the start of its own partition’s time 

slice, and can therefore go ahead now with the 

synchronisation, in the knowledge that it won’t 

be interrupted before it has finished. 

One further point of interest, regarding timing, 

is that the MGF also has to tolerate up to 4 

hours without the external time reference (the 

PFT time via the IRIG-B), and still meet its 

deadlines. In four hours, the internal clocks 

could drift away (in either direction) from the 

GST. Therefore, the deadlines that are allotted 

to the tasks in the MGF software are actually set 

pessimistically, assuming the worst case. So, 

when a task deadline is X milliseconds with 

respect to the GST, the MGF task is given a 

deadline of X minus 7ms to cope with the 

potential drift. 

 

7.4. Automatic Boot Procedure 

One of the most complex problems that had to 

be solved in the MGF is the procedure for 

booting up the element.  

There are three boards, and on each board, there 

is a KDI, an RTOS, loader software to cope 

with the protocol for starting up the boards in a 

step-wise fashion, and of course the application 

software in each board. In fact, there is not just 

one application software board, because each 

one has a default (nominal) executable, a 

backup executable (in case the default, perhaps 

newly installed, image fails), and possibly a test 

executable (to be loaded instead of the 

operational application software, in order to 

perform trouble-shooting).  

Furthermore, the application is not just one 

executable file, but may be several (the SNMP 

processes in Board 3 are separate executables), 

and are accompanied by their associated 

configuration parameter files.  

Here’s how it works: 

1. At power-on, or after performing a reset in 

the three processing boards, the RTOS 

(KDI) is launched by the LynxOS pre-boot 

application in each processing board, from 

the image stored in the flash memory. 

2. Each LynxOS-KDI starts automatically one 

pre-configured main application per VM. 

B1 has two VMs (one for each partition), 

while B2 and B3 have one VM each. The 

KDIs also launch a small “loader” 

application in each partition. 

3. The multi-board boot-up is co-ordinated 

and controlled from B3. It protects the 

MGF from becoming inoperable as a 

consequence of loading a corrupted 

application software or one that fails to start 

correctly: 

o The B3 loader checks the MD5 digest of 

the KDI in B3 It writes a special file (to 

disk), that the application will delete 

when it starts. If the loader finds the file 

still there the next time it executes, it will 

know that the application failed to start 

correctly, and so will try instead to launch 

the backup application.  

o The set of files to be loaded into memory 

and executed, as well as the associated set 

of configuration files, are listed in “SW 

package files”, and the loaders perform 

version consistency checks as well as 

MD5 file digest checks to ensure that 

everything is correct, before going ahead 

and loading the software. If there is a 

version or MD5 error, the loader reverts 

to the backup application package. 

o Failures detected by the loader are written 

to file, so that they can be read by the 

application and/or by the operator. 

4. The boot process continues in the B3 

application, once it has started. It checks 

certain disk files to see if there is any 

unfinished work to do, that was started 

before a reset, and has to be finished during 

the boot. This includes unfinished mode 

change and software installation 

commands. It also reads another file to get 

the results of the power-on built-in tests 

(PBIT) performed by the loader, and writes 

them into the board’s MIB.  If the PBIT 

results indicate a failure, the application 

automatically transits to FAILED mode. 

5. The B3 application loads its own 

configuration data from the associated disk 



 

files. This too is protected against 

inadvertent errors in the configuration files. 

If an error is detected, the application loads 

hard-coded (fully validated) parameters that 

allow the MGF to communicate with the 

GACF. 

6. Meanwhile, the loaders in B1 and B2 send 

a message, once each second, to B3 via 

VMEbus, to show that they are LOADED 

and awaiting further instructions. As soon 

as they get a message from B3 (and so they 

know that B3 is alive), they proceed to 

verify their KDIs (versions and MD5 

digests), informing B3 (via VME message) 

of the results. 

7. The next step is for the operator (GACF) to 

command the MGF to go to INITIALISED 

mode. B3 responds to it by starting the load 

process on the other two boards.  

8. The application files for those boards are 

actually stored in the disk that is accessible 

only to B3, to B3 has to provide them (via 

VMEbus) to the other two boards. Once the 

loaders in the other boards have 

successfully received and verified the files, 

they proceed to launch them. 

9. B3 implements a timeout on the software 

launch in B1 and B2. It starts a timer when 

the files are sent. The application software 

in the other boards have to report back to 

B3 before the timeout expires, otherwise 

B3 treats it as an error. 

10. Once the application software is executing 

in all three boards, the process continues 

with the exchange of configuration 

parameters, also sent from B3 to the other 

boards via VME. This is another quite 

complex sequence, also with many 

verifications to detect potential errors (such 

as mismatches between applications and 

configuration parameters).  It is further 

complicated by the need to implement the 

“Install” command, which changes the 

default configuration parameters. 

11. If all works properly, at the end of this 

process all the components will have been 

started in all boards/partitions and the 

transition to INITIALISE mode continues 

(this isn’t the end of the story!). 

When the B3 application software is 

commanded to transit to TEST mode, it writes 

another special file to disk to indicate to the B3 

loader  (which will execute after the board is 

reset) to load the Test software instead of the 

application software. 

8. CONCLUSIONS 

The MGF started out as a single-board design, 

with its software entirely at DAL-B. The final 

design is based on three processing boards with 

four software partitions, at a variety of DALs. 

The MGF does use software partitioning in one 

board, where the message processing and the 

safety box reside, and that has strong benefits. 

On the other hand, further software partitioning 

would not be at all appropriate for the other 

functions (mainly I/O) in the MGF, and they are 

better suited to being implemented in a single 

partition in separate boards. 

The consequences of the multi-board 

architecture are: a lot of internal traffic on the 

VMEbus; further complexity in order to 

synchronise the boards and to ensure that they 

cooperate correctly; and the boot (and mode 

transition) process is quite complex.  

There are many verifications that act as safety 

barriers to prevent fault propagation between 

different DALs and to protect against corruption 

of data (especially important with regard to 

integrity-related data) within the MGF, in 

particular when travelling between boards. 

Nevertheless, the multi-board architecture is the 

best solution to cope with the problem of the 

many physical external interfaces, the CPU load 

induced by the processing of large amounts of 

data, the need to guarantee the hard real-time 

deadlines in the TTA-related portion of the 

message generation process, and it also strongly 

supports the DAL reduction (which benefits the 

software developers).  

Identifying the tricky problems in the design, 

finding the potential fault propagation paths, 

and then inventing smart solutions to place 

adequate safety barriers, to ensure the hard real-

time deadlines, and so on, has been one of the 

most interesting aspects of the MGF 

development project. Ultimately, we are 

confident that the MGF will be a reliable and 

safe element of the GMS.  
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