

Galileo “Message Generation Facility” – Safety-critical and Real-time

Antonio LATORRE
(1)

, Adrián MORA
(1)

, Pedro PALOMO
(1)

, Tomás SUAREZ
(1)

, Mike RENNIE
 (1)

(1)
 DEIMOS Space, Ronda de Poniente, 19, Edificio FiteniVI, 2-2, 28760 Tres Cantos, Madrid, Spain.

Email: Antonio.Latorre@deimos-space.com

ABSTRACT

1. CONTEXT OF THE MGF

Galileo will be an independent, global

European-controlled, satellite-based navigation

system. It will have a constellation of satellites

monitored and controlled by a Ground Control

Segment (GCS) providing also the capability to

detect satellite or system malfunctions and

broadcast real-time warnings (integrity

messages).

GALILEO is a programme sponsored by the

European Space Agency and the European

Union.

The overall Galileo System is divided into two

main segments:

 The Galileo Space Segment (SS) will

comprise a constellation of 36 satellites in

MEO. Each satellite will broadcast four

ranging signals carrying clock

synchronisation, ephemeris, integrity and

other data, depending on the particular

signal. A user equipped with a suitable

receiver will be able to determine his

position to within a few metres when

receiving signals from visible Galileo

satellites.

 The Galileo Ground Segment (GS) will

control the whole Galileo constellation,

monitor the satellite health and up-load data

for subsequent broadcast to users. The key

elements of this data such as clock

synchronisation, ephemeris and integrity,

will be calculated from measurements made

by a network of Galileo receiving stations.

The GS is split into:

o The Ground Control Segment (GCS) in

charge of monitoring and control of the

Galileo constellation.

o The Ground Mission Segment (GMS) in

charge of the determination and

dissemination of the navigation and

integrity data and of the external

components data (ERIS, SAR, CS, etc.).

It is decomposed into several “elements”,

one of which is the Message Generation

Facility (MGF).

The MGF is developed by an industrial

consortium headed by DEIMOS Space, as “N-

2” element prime. The GMS itself is the

responsibility of TAS (Toulouse) as “N-1”

segment prime.

2. OBJECTIVES OF THE MGF

The Message Generation Facility is one of

several elements, along with the OSPF, IPF,

Key Management facilities and MUCF, that

comprise the “processing chain” of the GMS.

The MGF is in charge of multiplexing and

routing navigation/integrity data to be sent for

mission uplink. It also performs multiplexing of

Search & Rescue (SAR), Commercial Service

(CS) and external regional integrity data

(ERIS). It is the meeting point for all the data

streams that make up the C-Band Uplink

Messages.

Its mission is to elaborate messages as specified

in the GMS to Space ICD, by multiplexing

those data that allow providing the Open

Service (OS), CS, Safety of Life (SoL), Public

Regulated Service (PRS), SAR, and ERIS

services. The multiplexed streams are then

forwarded to the Uplink Stations

(ULS)/antennas according to pre-defined

routing tables constrained by the ULS antennas

tracking plan and by needs specific to each

service.

Messages to be provided to the GCS (for the

Degraded Navigation Service, through S-Band)

are also prepared by the MGF. In particular,

selection processes are implemented to handle

the various redundancies of input streams. Also,

the MGF has to manage the specific feature of

the integrity messages in the Galileo SIS by

building messages with integrity Tables

(periodically) and with related Alarms

(continuously) on the basis of input integrity

data.

The handling of Integrity data is time and safety

critical, and the MGF implements a Safety-

Monitor (or “Safety Box”) capable of

identifying, and isolating, failures in the

processing. Safety Monitor is the main barrier

included in the architecture to avoid integrity

data corruption (Critical Event), and it does

verifications on alert generation, HIT

generation, Region Status, Alert counter

management, AIT update, application CRC

verification, IPF input data selection and ERIS

data.

In summary, the MGF must ensure the

following real-time processing functions,

among others:

 Navigation, Integrity, ERIS, SAR, etc. data

acquisition and processing

 Time/Safety-Critical Integrity alarms

elaboration for SoL and PRS services. This

data is composed of the safety-critical signal

status alarms that indicate to the final users if

the positioning data sent by a given satellite

can be trusted.

The integrity alarms produced by the GMS

have to be sent to the final users in a limited

time (TTA – Time To Alarm). Each element

in the GMS has been assigned a particular

portion of the TTA.

 Generation, at 1Hz, of dedicated message

sub-frames for each Galileo satellite,

containing:

o OS navigation data in order to provide the

satellites with orbit determination data,

satellites clock correction data with

respect to Galileo System Time (GST),

Signal-in-Space Accuracy (SISA) data,

ionospheric products and other services

o SoL navigation data, providing the same

products as above

o SAR data for given satellites and SAR

beacons

o Encrypted CS data for transmission to

specific regions

o Encrypted PRS integrity and navigation

data, including integrity alarms for PRS,

status of the Galileo constellation,

SISMA data for the constellation, and a

complete set of PRS navigation data

 Generation, at 1Hz, of dedicated integrity

message for each Galileo satellite, containing

integrity data for the SoL service. This data

includes:

o Integrity alarms for SoL

o Status of the whole Galileo constellation

o Hard Integrity Tables (HIT) containing

the predicted SISMA data for the whole

constellation

o External Service Providers (ERIS)

integrity data, dedicated to specific

regions

 Generation of the Quality of Service (QoS)

indicators to be used by the GMS to select

the best messages to up-link

 Generation of the corresponding ground

assets technical monitoring data

 Generation of mission monitoring data

3. ELEMENT INTERFACES

The figure below shows a basic representation

of the external interfaces of the MGF Element,

and includes the associated external data flows

between external elements (inside and outside

the GMS) and MGF.

Figure 1. MGF Interfaces

The physical interfaces between the MGF and

other elements are as follows:

 The GCC Real-time LAN (RT): Using the

UDP/IP protocol.

 The GCC Near real-time LAN (NRT):

o Using the TCP/IP protocol for non-real

time data transfers.

o Using the FTP protocol for transferring

routing tables, configuration files and

local storage data migration to the global

archive.

o Using the SNMP protocol for GACF /

LME control and monitoring transfers.

 xKMF Security Ports: Dedicated Ethernet

lines, using UDP/IP for real-time transfers.

 The PTF time dissemination network

(IRIG-B): The time signal sent by the PTF

facility is received in the MGF by a time

acquisition card.

 Local Maintenance Interface (LMI): This

is a local network port used for element

maintenance and test.

 Test ports: Used in all modes except “Off”

to send potentially – for test and observation

purposes – all MGF products.

 Front Panel LEDs: give a visible indication

of the current mode and status of the MGF.

4. ARCHITECTURE

Fig 2. illustrates the physical architecture of the

MGF.

It comprises three processing boards, two of

which have a SATA Hard Disk for file storage,

and a VMEbus backplane that provides the

means to implement inter-board

communications (as well as power distribution).

Two of the boards implement the external

interfaces. All boards have a flash disk to

support the boot process. The hardware has

been integrated in a VME rack by Thales

Computers.

One board contains two software partitions

(CPU time and memory space partitioning),

allowing the DAL-B Safety Monitor to be

hosted in the same board as the DAL-C frame

generation software that it protects. The

underlying real-time operating system is a

version of LynxOS-178B, from LynuxWorks,

tailored for use in Galileo.

The software architecture has been decomposed

at the highest level into three “components”:

Message Processing & Uplink Frame

Generation (MPUFG), Monitoring & Control

(M&C) and External Interfaces (EIF). MPUFG

(which includes the Safety Box) is contained

entirely within Board 1, while the other two

components, M&C and EIF are present in all

three boards. The relevant components are

compiled and linked to produce the application

software executables that run on each

board/partition.

In addition, dedicated “loader” programmes

have to be developed per board to support the

boot process, and these are considered part of

the M&C.

Figure 2. MGF Interfaces

The software architecture has been decomposed

into around 280 terminal HOOD objects (not

including OP_Control objects) across all three

SW components, resulting in individual objects

that are a manageable size and where each

object is traced to a reasonably small number of

requirements.

5. ANALYSIS AND DESIGN

The MGF element functional decomposition

uses IDEF0 notation, allowing it to be presented

in an ordered and hierarchical way. The

principal functions are decomposed into sub-

functions, the incoming and outgoing data

flows, control commands, resources, etc.

At software-level, in the Software System

Specification, the technique of “Functional

chains” has been applied.

The software life-cycle caters for DALs “B”

(Safety Box, including “agents” of M&C and

EIF), “C” (the rest of MPUFG, a large part of

EIF and another M&C agent) and “E” (a large

part of M&C and another EIF agent). As can be

seen, different pieces of each SW component

have to be developed to different DALs.

The software architectural design has been

performed using the Hard Real-Time

Hieracrchical Object-Oriented Design (HRT-

HOOD) methodology (supported by the

“Stood” tool from Ellidiss).

The requirements are managed in a DOORS

database, for easy exchange with the GMS

prime, but in addition, the traceability between

SRDs and the design model in Stood is

supported by the “Reqtify” tool from TNI,

which acts as a bridge between DOORS and

Stood.

6. DEPENDABILITY AND SAFETY

As the MGF is a safety-critical element in the

real-time processing chain in the GMS, a large

effort has been made on the RAMS activities.

Initial Fault Tree Analysis (FTA) was

performed in order to allocate the SW DAL (i.e.

demonstrate that the barriers defined in the

design allow the DAL to be reduced). In

parallel, initial hazard analysis (HA) was

performed at the very beginning of the design

(i.e. at functional level). Hazards identified at

this level (e.g. possible Single Point Failures)

were mitigated by injecting recommendations

into the design.

Once the SW/HW was defined (taking into

account the results of the initial RAMS

activities) a complete set of RAMS analyses

were performed: HW analysis (Reliability and

Maintainability), FMECA, FTA (both

qualitative and quantitative), HA for “personal

safety”, HSIA, CM&CCA and COA. All these

analyses generate recommendations that are

then injected into the design, or design process,

in order to mitigate the identified critical items.

Exhaustive follow-up of those recommendations

is done in order to assure their correct

implementation.

7. DIFFICULTIES AND PROBLEMS

THAT HAD TO BE OVERCOME

7.1. Outline

The remainder of this paper addresses the main

technical issues that presented some difficulties

and interesting problems that had to be solved in

the specification and design of the MGF.

Briefly, they can be summarised as follows:

 At first, the MGF was expected to be

implemented on a single board (single

processor). However, for several reasons, the

architecture is now the three-board solution

presented above.

The reasons include the evolving

requirements regarding physical interfaces to

the external elements, feedback from RAMS

analyses (DAL-reduction, safety barriers and

critical items) the need to separate the “soft”

real-time processing (of asynchronous

external inputs) from the truly “hard” real-

time processing (associated mainly with

message processing and frame generation),

and even the raw processing power (with

margin!) that it requires (particularly in the

time-critical segment of the processing that

contributes to the Time-To-Alarm).

The three-board design solved the problems

inherent in the original one-board design, but

created other problems of its own, that

required creative and novel solutions.

 Time synchronisation across three boards,

using the VME to distribute the time

received by a single IRIG-B on one of the

boards, presented quite a few headaches.

Careful time synchronisation is essential to

ensure that the VMEbus is shared by all three

boards correctly (they all refer to the same

time schedule for exchanging messages via

the bus).

 The automatic boot procedure for the three

boards required a considerable amount of

thought and effort to develop.

It is only partially supported by the operating

system on each board. The application

software (including the “loaders”) have to

manage and control the boot and

initialisation of the three boards, in a fully

co-ordinated manner, and including the

commanded (from the GACF) mode

changes.

These problems are explored in more detail

below:

7.2. Three Processing Boards

RAMS analyses at segment (GMS) level

determined that the MGF should be assigned

software DAL-B. However, as a result of the

element-level RAMS process, different software

components or functions have been given

different DALs. A condition for this is that the

software parts with different DALs must be

separated from one another such that runtime

errors are prevented from being propagated

from lower to higher DAL software.

Our initial approach was based on using a DO-

178B (“ARINC653-like”) compliant operating

system that supports time (CPU) and space

(memory) partitioning, and all of the software

executing on the same board.

The MGF has many external interfaces to the

rest of the GMS. It is connected to: the real-time

(RT) LAN for receiving and sending data at

1Hz (e.g. input integrity data from the IPFs,

output uplink sub-frames to the ULSes); the

near real-time (NRT) LAN for exchanges at a

lower frequency, including the command and

monitoring interface with the GACF; and the

dedicated Ethernet interfaces for exchanging

messages with the security elements (xKMF).

A single board could not support the required

number of Ethernet ports, and that is one reason

for extending the design to several boards.

Another important reason is that the processing

of received UDP/IP and TCP/IP messages,

performed in the RTOS, is done in periods of

time that cannot be controlled or guaranteed by

the application software. That cannot be

tolerated in a safety-critical hard real-time

system. The sequence of functions that generate

the uplink sub-frames form a kind of “critical

path”, where the CPU margins (between the

deadline for one step and the latest start of the

next step) are as short as a few milliseconds.

These margins could be consumed if extraneous

activity, namely the RTOS handling messages

arriving from the LANs, were allowed to pre-

empt the application just at the worst moment.

That would make it impossible to guarantee the

MGF’s critical TTA-related deadlines for the

generation of the uplink sub-frames. Therefore,

the processing of the network traffic, both input

and output, has been put onto boards 2 (RT) and

3 (NRT), leaving board 1 to perform uplink the

message generation unmolested by sporadic

interruptions coming from the external

interfaces.

The 3-board architecture solved the problem of

how to support the many external interfaces of

the MGF, but it raised another problem, namely

the internal interfaces. Input data to be used in

the production of the uplink sub-frames arrives

in boards 2 and 3, but the sub-frames

themselves are built in board 1. Those sub-

frames are sent to the mission data distribution

network (MDDN) via the RT LAN through

board 2. This implies that a lot of data has to be

moved about between boards, in real-time.

The first part of the solution was to use the

VMEbus to exchange data between boards.

However, that solution comes at a cost. We still

have to guarantee those critical deadlines for the

uplink sub-frame generation in board 1, so the

VME traffic has to be carefully controlled, such

that it is deliberately scheduled to occur at

allotted times. That means the times for the

VME exchanges have to be known by design,

and have to fit into the overall schedule of all

the activities that occur during each 1-second

cycle. In particular, there is a certain span of

time (around 100ms) leading up to the critical

deadline for sending the generated sub-frames

from board 1 to board 2, where the margins are

very short, and almost no other VME traffic can

be done in parallel (VME traffic is not

instantaneous, it implies a CPU load on the

origin and destination boards because of DMA

transfers robbing CPU cycles).

So, the next part of the solution was to organise

design an application-level “scheduler” that

initiates VME transfers according to a pre-

defined, fixed plan. That plan has to

accommodate the worst-case traffic scenario,

and include margins (for error, or for

minimising the impact of future changes to the

scenario).

The design of the VME bus access plan had to

cope with some other problems:

 Partition time-slicing in Board 1

The time-slicing between the two partitions

in B1 introduces jitter in the initiation of

VME transfers, because when one partition is

programmed to start a transfer at time t, the

other partition might be scheduled by the

RTOS, so the first partition might not

actually be able to start its transfer until it

gets the CPU again, at the next time slice, i.e

.at t+(time slice). Furthermore, if a transfer

takes longer than the time slice of the

initiating partition, the transfer will be

suspended while the other partition is

scheduled, resuming when the initiator gets

its next time slice.

This is illustrated below:

FG at (1), which is during the 3rd ms of its

1st time slice, initiates a transfer with a CPU

execution time of 7ms. During that time, SM

will be scheduled three times (for a total of

3ms), so we say that the time-slice overhead

is 3ms.

 Ensure that the processes contributing to the

TTA have exclusive access to the VME

when they need it.

Other VME traffic that has nothing to do

with TTA is allocated VME time slots

before the TTA-processing cycle or after the

last TTA deadline, so that they don’t

interfere with the TTA.

The fixed “VME bus access plan” is

implemented in all three boards by a high-

priority cyclic task executing at 500Hz, i.e. the

schedule is composed of 500 slots of 2ms each.

The same, common schedule is used in all three

boards. When a transfer needs more than one

slot, then consecutive (contiguous) slots are

allocated in the schedule.

In most cases, the entire transfer of data can be

performed in one or more VME slots in the

same 1-second cycle. However, in a few cases,

where a large amount of data has to be

transferred, the approach is to spread the

transfer over several 1-second cycles. In each

cycle, a reasonable amount of data is

transferred. The duration of this type of transfer

is defined with the aim of making good use of

the VME (by transferring data in large chunks,

so that the transfer of the entire data does not

take an unnecessarily long amount of time).

The VME bus schedule is synchronised with the

GST epoch, i.e. with the 1-second time signal

coming from the IRIG-B. It therefore relies on

that time synchronisation between boards to

ensure that the VME bus usage is synchronised.

The schedule

says when to read, when to write, and what type

of message/data is to be transferred.

The VME schedule allocates time slots for all

possible transfers that can occur each second.

Some transfers are not necessarily performed

every second. When there is no such transfer to

perform, there will simply be no data available

to transfer, so the allocated time slots on the

VME will be “idle”.

There is another important aspect of this inter-

board communication point that needs to be

highlighted here. When data is exchanged

across boards, it is being exchanged between

software with different DALs. It is imperative to

prevent the propagation of faults from lower to

higher DALs, so the inter-board messages are

protected by several means:

 They are CRC-protected

 The transfers via VME between boards,

regardless of the direction of the data flow,

are always initiated from the board

containing the highest DAL software. B1 is

DAL-B/C, B2 is DAL-C, and B3 is DAL-E.

So, transfers between B1 and either B2 or

B3, are performed under the control of B1.

Transfers between B2 and B3 are performed

under the control of B2. This means that a

B3 never writes to the RAM of B2, and B2

never writes to the RAM of B1.

 Each type of message has a unique,

dedicated area in the exchange memory, and

they each have an associated counter. The

counter is used to make sure that old data

(that should have been updated with a new

message, but got left behind because of a

fault in the originating board) cannot be

mistaken for new data.

The tasks that produce the data to be sent over

the VME place their data into a buffer in the

originating board. The VME scheduler task,

when the allotted time slot is reached, triggers

the processing of the relevant buffer, fetching

the stored data and managing it’s transfer.

Similarly, when data is scheduled to be read, the

VME scheduler task on the higher-DAL board,

at the allotted slot time, initiates the transfer and

deposits the received data into a buffer from

where it can be picked up by the destination

task (the one that actually uses it for

something). This ensures that the VME traffic

happens in the allotted slots, rather than being

determined by when the producer/consumer

tasks perform their work. Note that when the

VME scheduler in a lower-DAL board triggers

a read or write, it does not actually initiate any

traffic on the VMEbus, but instead merely

access the VME-mapped RAM in its own

board, and moves data to/from that area and the

local buffers (that are accessed by the other

producer/consumer tasks).

Of course, all of this relies on accurate time

synchronisation between all three boards, which

is another tricky problem, as we shall see next.

7.3. Inter-Board Synchronisation

There are three boards in the MGF, but only one

IRIG-B card, which is connected to Board 1.

Therefore, the other two boards do not have

direct access to the GST.

Nevertheless, all three boards to set their clocks

to be synchronised to the external time from the

PTF, not just for the purposes of generating or

verifying time-stamps on messages, but also in

order to ensure that their respective VMEbus

schedulers are synchronised with respect to each

other, as explained previously.

This is performed by a task in board 1 (DAL B

partition) that acquires the external time from

the IRIG-B signal, updates the system time of

the Board 1, immediately writes that time into a

reserved VME-mapped location in the other two

boards, and then generates interrupts in the

those boards in order to trigger them to go and

synchronize their own system clocks using the

time provided by B1. This is done once every

second, so that there is no significant drift

between boards in the meantime.

However, there is another little problem. Board

1 has two partitions, and jitter caused by the

partition time-slicing (as already mentioned).

The boards would be synchronised badly if the

procedure was unlucky enough to set the system

time just before a partition time-slice came

along, and then interrupt the other boards just

after the other partition time-slice finished,

because 3ms (enough to invalidate the VMEbus

traffic plan) would have elapsed in the

meantime!

Therefore, the synchronisation task in Board 1

(DAL-B) has to be “uninterruptible”.

The synchronisation task is very high-priority,

and when it starts (once each second), it goes

into a continuous loop, reading the time, and

comparing it with the previous time it read.

When it sees that there has been an

(approximately) 3ms jump in the time (instead

of the expected, very short time difference), it

deduces that there must have been a time-slice

in the middle. Therefore, it also knows that it

must be at the start of its own partition’s time

slice, and can therefore go ahead now with the

synchronisation, in the knowledge that it won’t

be interrupted before it has finished.

One further point of interest, regarding timing,

is that the MGF also has to tolerate up to 4

hours without the external time reference (the

PFT time via the IRIG-B), and still meet its

deadlines. In four hours, the internal clocks

could drift away (in either direction) from the

GST. Therefore, the deadlines that are allotted

to the tasks in the MGF software are actually set

pessimistically, assuming the worst case. So,

when a task deadline is X milliseconds with

respect to the GST, the MGF task is given a

deadline of X minus 7ms to cope with the

potential drift.

7.4. Automatic Boot Procedure

One of the most complex problems that had to

be solved in the MGF is the procedure for

booting up the element.

There are three boards, and on each board, there

is a KDI, an RTOS, loader software to cope

with the protocol for starting up the boards in a

step-wise fashion, and of course the application

software in each board. In fact, there is not just

one application software board, because each

one has a default (nominal) executable, a

backup executable (in case the default, perhaps

newly installed, image fails), and possibly a test

executable (to be loaded instead of the

operational application software, in order to

perform trouble-shooting).

Furthermore, the application is not just one

executable file, but may be several (the SNMP

processes in Board 3 are separate executables),

and are accompanied by their associated

configuration parameter files.

Here’s how it works:

1. At power-on, or after performing a reset in

the three processing boards, the RTOS

(KDI) is launched by the LynxOS pre-boot

application in each processing board, from

the image stored in the flash memory.

2. Each LynxOS-KDI starts automatically one

pre-configured main application per VM.

B1 has two VMs (one for each partition),

while B2 and B3 have one VM each. The

KDIs also launch a small “loader”

application in each partition.

3. The multi-board boot-up is co-ordinated

and controlled from B3. It protects the

MGF from becoming inoperable as a

consequence of loading a corrupted

application software or one that fails to start

correctly:

o The B3 loader checks the MD5 digest of

the KDI in B3 It writes a special file (to

disk), that the application will delete

when it starts. If the loader finds the file

still there the next time it executes, it will

know that the application failed to start

correctly, and so will try instead to launch

the backup application.

o The set of files to be loaded into memory

and executed, as well as the associated set

of configuration files, are listed in “SW

package files”, and the loaders perform

version consistency checks as well as

MD5 file digest checks to ensure that

everything is correct, before going ahead

and loading the software. If there is a

version or MD5 error, the loader reverts

to the backup application package.

o Failures detected by the loader are written

to file, so that they can be read by the

application and/or by the operator.

4. The boot process continues in the B3

application, once it has started. It checks

certain disk files to see if there is any

unfinished work to do, that was started

before a reset, and has to be finished during

the boot. This includes unfinished mode

change and software installation

commands. It also reads another file to get

the results of the power-on built-in tests

(PBIT) performed by the loader, and writes

them into the board’s MIB. If the PBIT

results indicate a failure, the application

automatically transits to FAILED mode.

5. The B3 application loads its own

configuration data from the associated disk

files. This too is protected against

inadvertent errors in the configuration files.

If an error is detected, the application loads

hard-coded (fully validated) parameters that

allow the MGF to communicate with the

GACF.

6. Meanwhile, the loaders in B1 and B2 send

a message, once each second, to B3 via

VMEbus, to show that they are LOADED

and awaiting further instructions. As soon

as they get a message from B3 (and so they

know that B3 is alive), they proceed to

verify their KDIs (versions and MD5

digests), informing B3 (via VME message)

of the results.

7. The next step is for the operator (GACF) to

command the MGF to go to INITIALISED

mode. B3 responds to it by starting the load

process on the other two boards.

8. The application files for those boards are

actually stored in the disk that is accessible

only to B3, to B3 has to provide them (via

VMEbus) to the other two boards. Once the

loaders in the other boards have

successfully received and verified the files,

they proceed to launch them.

9. B3 implements a timeout on the software

launch in B1 and B2. It starts a timer when

the files are sent. The application software

in the other boards have to report back to

B3 before the timeout expires, otherwise

B3 treats it as an error.

10. Once the application software is executing

in all three boards, the process continues

with the exchange of configuration

parameters, also sent from B3 to the other

boards via VME. This is another quite

complex sequence, also with many

verifications to detect potential errors (such

as mismatches between applications and

configuration parameters). It is further

complicated by the need to implement the

“Install” command, which changes the

default configuration parameters.

11. If all works properly, at the end of this

process all the components will have been

started in all boards/partitions and the

transition to INITIALISE mode continues

(this isn’t the end of the story!).

When the B3 application software is

commanded to transit to TEST mode, it writes

another special file to disk to indicate to the B3

loader (which will execute after the board is

reset) to load the Test software instead of the

application software.

8. CONCLUSIONS

The MGF started out as a single-board design,

with its software entirely at DAL-B. The final

design is based on three processing boards with

four software partitions, at a variety of DALs.

The MGF does use software partitioning in one

board, where the message processing and the

safety box reside, and that has strong benefits.

On the other hand, further software partitioning

would not be at all appropriate for the other

functions (mainly I/O) in the MGF, and they are

better suited to being implemented in a single

partition in separate boards.

The consequences of the multi-board

architecture are: a lot of internal traffic on the

VMEbus; further complexity in order to

synchronise the boards and to ensure that they

cooperate correctly; and the boot (and mode

transition) process is quite complex.

There are many verifications that act as safety

barriers to prevent fault propagation between

different DALs and to protect against corruption

of data (especially important with regard to

integrity-related data) within the MGF, in

particular when travelling between boards.

Nevertheless, the multi-board architecture is the

best solution to cope with the problem of the

many physical external interfaces, the CPU load

induced by the processing of large amounts of

data, the need to guarantee the hard real-time

deadlines in the TTA-related portion of the

message generation process, and it also strongly

supports the DAL reduction (which benefits the

software developers).

Identifying the tricky problems in the design,

finding the potential fault propagation paths,

and then inventing smart solutions to place

adequate safety barriers, to ensure the hard real-

time deadlines, and so on, has been one of the

most interesting aspects of the MGF

development project. Ultimately, we are

confident that the MGF will be a reliable and

safe element of the GMS.

9. ACKNOWLEDGEMENTS

The authors wish to express their gratitude to

the following contributors to this paper:

Robert Pagnot, EADS Astrium-F

Gérard Bulsa, ESA/ESTEC

